Mapping the potential distribution suitability of 16 tree species under climate change in northeastern China using Maxent modelling

被引:28
|
作者
Liu, Dan [1 ]
Lei, Xiangdong [1 ]
Gao, Wenqiang [1 ]
Guo, Hong [1 ]
Xie, Yangsheng [1 ]
Fu, Liyong [1 ]
Lei, Yuancai [1 ]
Li, Yutang [2 ]
Zhang, Zhuoli [1 ]
Tang, Shouzheng [1 ]
机构
[1] Chinese Acad Forestry, Inst Forest Resource Informat Tech, Key Lab Forest Management & Growth Modelling, Natl Forestry & Grassland Adm, Beijing 100091, Peoples R China
[2] Acad Forest Inventory & Planning Jilin Prov, Changchun 130022, Peoples R China
关键词
Species distribution model; National forest inventory data; Natural forest; Climate change; Site suitability mapping; Maxent modelling; GEOGRAPHICAL-DISTRIBUTION; HABITAT; PERFORMANCE; PREDICTION; IMPROVE; PLANTS; AUC;
D O I
10.1007/s11676-022-01459-4
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Knowledge on the potential suitability of tree species to the site is very important for forest management planning. Natural forest distribution provides a good reference for afforestation and forest restoration. In this study, we developed species distribution model (SDM) for 16 major tree species with 2,825 permanent sample plots with natural origin from Chinese National Forest Inventory data collected in Jilin Province using the Maxent model. Three types of environmental factors including bioclimate, soil and topography with a total of 33 variables were tested as the input. The values of area under the curve (AUC, one of the receiver operating characteristics of the Maxent model) in the training and test datasets were between 0.784 and 0.968, indicating that the prediction results were quite reliable. The environmental factors affecting the distribution of species were ranked in terms of their importance to the species distribution. Generally, the climatic factors had the greatest contribution, which included mean diurnal range, annual mean temperature, temperature annual range, and iosthermality. But the main environmental factors varied with tree species. Distribution suitability maps under current (1950 - 2000) and future climate scenarios (CCSM4-RCP 2.6 and RCP 6.0 during 2050) were produced for 16 major tree species in Jilin Province using the model developed. The predicted current and future ranges of habitat suitability of the 16 tree species are likely to be positively and negatively affected by future climate. Seven tree species were found to benefit from future climate including Betula costata, Fraxinus mandshurica, Juglans mandshurica, Phellodendron amurense, Populus ussuriensis, Quercus mongolica and Ulmus pumila; five tree species will experience decline in their suitable habitat including B. platyphylla, Tilia mongolica, Picea asperata, Pinus sylvestris, Pinus koraiensis; and four (Salix koreensis, Abies fabri, Pinus densiflora and Larix olgensis) showed the inconsistency under RCP 2.6 and RCP 6.0 scenarios. The maps of the habitat suitability can be used as a basis for afforestation and forest restoration in northeastern China. The SDMs could be a potential tool for forest management planning.
引用
收藏
页码:1739 / 1750
页数:12
相关论文
共 50 条
  • [31] Human activities affect the future suitability of alien urban landscape species in China under climate change
    Mou, Wenbo
    Jin, Cheng
    Hu, Siwei
    Zhou, Lihua
    Luo, Min
    Long, Yuxiao
    Yang, Yongchuan
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2025, 380
  • [32] Editorial: The potential impacts of climate change on the distribution of tree species
    Guo, Yanlong
    Lu, Chunyan
    Gu, Wei
    Zhao, Zebin
    Yang, Di
    FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2023, 6
  • [33] Impact of climate change on the future distribution of three Ferulago species in Iran using the MaxEnt model
    Hosseini, Naser
    Mostafavi, Hossein
    Sadeghi, Seyed Mohammad Moein
    INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, 2024, 20 (04) : 1046 - 1059
  • [34] Prediction of potential habitat of Verbena officinalis in China under climate change based on optimized MaxEnt model
    Chen, Shimao
    Jiang, Zixuan
    Song, Jia
    Xie, Tao
    Xue, Yu
    Yang, Qingshan
    FRONTIERS IN PLANT SCIENCE, 2025, 16
  • [35] Predicting the potential distribution of the vine mealybug, Planococcus ficus under climate change by MaxEnt
    Ji, Wei
    Han, Kai
    Lu, Yunyun
    Wei, Jiufeng
    CROP PROTECTION, 2020, 137
  • [36] Maxent modelling for predicting climate change effects on the potential planting area of tuber mustard in China
    Li, H. Q.
    Liu, X. H.
    Wang, J. H.
    Xing, L. G.
    Fu, Y. Y.
    JOURNAL OF AGRICULTURAL SCIENCE, 2019, 157 (05): : 375 - 381
  • [37] Simulation of the potential distribution of rare and endangered Satyrium species in China under climate change
    Ouyang, Xianheng
    Bai, Shihao
    Strachan, Garry Brien
    Chen, Anliang
    ECOLOGY AND EVOLUTION, 2022, 12 (07):
  • [38] Using species distribution modelling to determine opportunities for trophic rewilding under future scenarios of climate change
    Jarvie, Scott
    Svenning, Jens-Christian
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2018, 373 (1761)
  • [39] Mapping the risk of quarantine pest Sternochetus mangiferae under different climate change scenarios through species distribution modelling
    Baradevanal, Gundappa
    Chander, Subhash
    Singh, Hari Shankar
    Reddy, Doddanagouda Srinivasa
    Rajan, Shailendra
    INTERNATIONAL JOURNAL OF TROPICAL INSECT SCIENCE, 2023, 43 (03) : 919 - 932
  • [40] Climate change may cause distribution area loss for tree species in southern China
    Guo, Yanlong
    Zhao, Zefang
    Zhu, Fuxin
    Li, Xin
    FOREST ECOLOGY AND MANAGEMENT, 2022, 511