Kernel Relative-prototype Spectral Filtering for Few-Shot Learning

被引:9
|
作者
Zhang, Tao [1 ]
Huang, Wu [2 ]
机构
[1] Chengdu Techman Software Co Ltd, Chengdu, Sichuan, Peoples R China
[2] Sichuan Univ, Chengdu, Sichuan, Peoples R China
来源
COMPUTER VISION, ECCV 2022, PT XX | 2022年 / 13680卷
关键词
Few-shot learning; Relative-prototype; Spectral filtering; Shrinkage; Kernel;
D O I
10.1007/978-3-031-20044-1_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot learning performs classification tasks and regression tasks on scarce samples. As one of the most representative few-shot learning models, Prototypical Network represents each class as sample average, or a prototype, and measures the similarity of samples and prototypes by Euclidean distance. In this paper, we propose a framework of spectral filtering (shrinkage) for measuring the difference between query samples and prototypes, or namely the relative prototypes, in a reproducing kernel Hilbert space (RKHS). In this framework, we further propose a method utilizing Tikhonov regularization as the filter function for fewshot classification. We conduct several experiments to verify our method utilizing different kernels based on the miniImageNet dataset, tiered-ImageNet dataset and CIFAR-FS dataset. The experimental results show that the proposed model can perform the state-of-the-art. In addition, the experimental results show that the proposed shrinkage method can boost the performance. Source code is available at https://github.com/zhangtao2022/DSFN.
引用
收藏
页码:541 / 557
页数:17
相关论文
共 50 条
  • [41] Few-Shot Learning for Image Denoising
    Jiang, Bo
    Lu, Yao
    Zhang, Bob
    Lu, Guangming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 4741 - 4753
  • [42] Exploring Quantization in Few-Shot Learning
    Wang, Meiqi
    Xue, Ruixin
    Lin, Jun
    Wang, Zhongfeng
    2020 18TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS'20), 2020, : 279 - 282
  • [43] Few-shot learning for ear recognition
    Zhang, Jie
    Yu, Wen
    Yang, Xudong
    Deng, Fang
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO AND SIGNAL PROCESSING (IVSP 2019), 2019, : 50 - 54
  • [44] Few-Shot Classification with Contrastive Learning
    Yang, Zhanyuan
    Wang, Jinghua
    Zhu, Yingying
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 293 - 309
  • [45] Few-Shot Learning with Novelty Detection
    Bjerge, Kim
    Bodesheim, Paul
    Karstoft, Henrik
    DEEP LEARNING THEORY AND APPLICATIONS, PT I, DELTA 2024, 2024, 2171 : 340 - 363
  • [46] Explore pretraining for few-shot learning
    Li, Yan
    Huang, Jinjie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (2) : 4691 - 4702
  • [47] Few-Shot Learning With Geometric Constraints
    Jung, Hong-Gyu
    Lee, Seong-Whan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (11) : 4660 - 4672
  • [48] An Applicative Survey on Few-shot Learning
    Zhang J.
    Zhang X.
    Lv L.
    Di Y.
    Chen W.
    Recent Patents on Engineering, 2022, 16 (05) : 104 - 124
  • [49] Demystification of Few-shot and One-shot Learning
    Tyukin, Ivan Y.
    Gorban, Alexander N.
    Alkhudaydi, Muhammad H.
    Zhou, Qinghua
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [50] Local descriptor-based multi-prototype network for few-shot Learning
    Huang, Hongwei
    Wu, Zhangkai
    Li, Wenbin
    Huo, Jing
    Gao, Yang
    PATTERN RECOGNITION, 2021, 116