Kernel Relative-prototype Spectral Filtering for Few-Shot Learning

被引:9
|
作者
Zhang, Tao [1 ]
Huang, Wu [2 ]
机构
[1] Chengdu Techman Software Co Ltd, Chengdu, Sichuan, Peoples R China
[2] Sichuan Univ, Chengdu, Sichuan, Peoples R China
来源
COMPUTER VISION, ECCV 2022, PT XX | 2022年 / 13680卷
关键词
Few-shot learning; Relative-prototype; Spectral filtering; Shrinkage; Kernel;
D O I
10.1007/978-3-031-20044-1_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot learning performs classification tasks and regression tasks on scarce samples. As one of the most representative few-shot learning models, Prototypical Network represents each class as sample average, or a prototype, and measures the similarity of samples and prototypes by Euclidean distance. In this paper, we propose a framework of spectral filtering (shrinkage) for measuring the difference between query samples and prototypes, or namely the relative prototypes, in a reproducing kernel Hilbert space (RKHS). In this framework, we further propose a method utilizing Tikhonov regularization as the filter function for fewshot classification. We conduct several experiments to verify our method utilizing different kernels based on the miniImageNet dataset, tiered-ImageNet dataset and CIFAR-FS dataset. The experimental results show that the proposed model can perform the state-of-the-art. In addition, the experimental results show that the proposed shrinkage method can boost the performance. Source code is available at https://github.com/zhangtao2022/DSFN.
引用
收藏
页码:541 / 557
页数:17
相关论文
共 50 条
  • [21] Interclass Prototype Relation for Few-Shot Segmentation
    Okazawa, Atsuro
    COMPUTER VISION, ECCV 2022, PT XXIX, 2022, 13689 : 362 - 378
  • [22] Holistic Prototype Activation for Few-Shot Segmentation
    Cheng, Gong
    Lang, Chunbo
    Han, Junwei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4650 - 4666
  • [23] Survey on Few-shot Learning
    Zhao K.-L.
    Jin X.-L.
    Wang Y.-Z.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (02): : 349 - 369
  • [24] AFGN: Adaptive Filtering Graph Neural Network for Few-Shot Learning
    Tan, Qi
    Lai, Jialun
    Zhao, Chenrui
    Wu, Zongze
    Zhang, Xie
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [25] Federated Few-shot Learning
    Wang, Song
    Fu, Xingbo
    Ding, Kaize
    Chen, Chen
    Chen, Huiyuan
    Li, Jundong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2374 - 2385
  • [26] Filtering Specialized Change in a Few-Shot Setting
    Hermann, Martin
    Saha, Sudipan
    Zhu, Xiao Xiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 1185 - 1196
  • [27] Few-shot object detection with semantic enhancement and semantic prototype contrastive learning
    Huang, Lian
    Dai, Shaosheng
    He, Ziqiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [28] Few-shot partial multi-label learning via prototype rectification
    Zhao, Yunfeng
    Yu, Guoxian
    Liu, Lei
    Yan, Zhongmin
    Domeniconi, Carlotta
    Zhang, Xiayan
    Cui, Lizhen
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (4) : 1851 - 1880
  • [29] Few-shot partial multi-label learning via prototype rectification
    Yunfeng Zhao
    Guoxian Yu
    Lei Liu
    Zhongmin Yan
    Carlotta Domeniconi
    Xiayan Zhang
    Lizhen Cui
    Knowledge and Information Systems, 2023, 65 : 1851 - 1880
  • [30] Complementary features based prototype self-updating for few-shot learning
    Xu, Xinlei
    Wang, Zhe
    Chi, Ziqiu
    Yang, Hai
    Du, Wenli
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 214