Time-fractional radial diffusion in a sphere

被引:32
|
作者
Povstenko, Yuriy [1 ]
机构
[1] Jan Dlugosz Univ Czestochowa, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
non-Fickean diffusion; anomalous diffusion; diffusion-wave equation; fractional calculus; Mittag-Leffler functions;
D O I
10.1007/s11071-007-9295-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The radial diffusion in a sphere of radius R is described using time-fractional diffusion equation. The Caputo fractional derivative of the order 0 <alpha < 2 is used. The Laplace and finite sin-Fourier transforms are employed. The solution is written in terms of the Mittag-Leffler functions. For the first and second time-derivative terms, the obtained solutions reduce to the solutions of the ordinary diffusion and wave equations. Several examples of signaling, source and Cauchy problems are presented. Numerical results are illustrated graphically.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 50 条
  • [42] Nonexistence results for a time-fractional biharmonic diffusion equation
    Jleli, Mohamed
    Samet, Bessem
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [43] Boundary Integral Solution of the Time-Fractional Diffusion Equation
    J. Kemppainen
    K. Ruotsalainen
    Integral Equations and Operator Theory, 2009, 64 : 239 - 249
  • [44] Existence and regularity of solutions to time-fractional diffusion equations
    Mu, Jia
    Ahmad, Bashir
    Huang, Shuibo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 985 - 996
  • [45] A MAXIMUM PRINCIPLE FOR TIME-FRACTIONAL DIFFUSION EQUATION WITH MEMORY
    Mambetov, S. A.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 120 (04): : 32 - 40
  • [46] On the invariant solutions of space/time-fractional diffusion equations
    Bahrami, F.
    Najafi, R.
    Hashemi, M. S.
    INDIAN JOURNAL OF PHYSICS, 2017, 91 (12) : 1571 - 1579
  • [47] Boundary Integral Solution of the Time-Fractional Diffusion Equation
    Kemppainen, J.
    Ruotsalainen, K.
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING VOL 2: COMPUTATIONAL METHODS, 2010, : 213 - 222
  • [48] The Wright functions as solutions of the time-fractional diffusion equation
    Mainardi, F
    Pagnini, G
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 141 (01) : 51 - 62
  • [49] Eigenfunctions of the time-fractional diffusion-wave operator
    Ferreira, Milton
    Luchko, Yury
    Rodrigues, M. Manuela
    Vieira, Nelson
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) : 1713 - 1743
  • [50] Reconstruction of pointwise sources in a time-fractional diffusion equation
    Hrizi, Mourad
    Hassine, Maatoug
    Novotny, Antonio Andre
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (01) : 193 - 219