Time-fractional radial diffusion in a sphere

被引:32
|
作者
Povstenko, Yuriy [1 ]
机构
[1] Jan Dlugosz Univ Czestochowa, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
non-Fickean diffusion; anomalous diffusion; diffusion-wave equation; fractional calculus; Mittag-Leffler functions;
D O I
10.1007/s11071-007-9295-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The radial diffusion in a sphere of radius R is described using time-fractional diffusion equation. The Caputo fractional derivative of the order 0 <alpha < 2 is used. The Laplace and finite sin-Fourier transforms are employed. The solution is written in terms of the Mittag-Leffler functions. For the first and second time-derivative terms, the obtained solutions reduce to the solutions of the ordinary diffusion and wave equations. Several examples of signaling, source and Cauchy problems are presented. Numerical results are illustrated graphically.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 50 条
  • [1] Time-fractional radial diffusion in a sphere
    Yuriy Povstenko
    Nonlinear Dynamics, 2008, 53 : 55 - 65
  • [2] Time-fractional radial diffusion in hollow geometries
    Qi, Haitao
    Liu, Jiaguo
    MECCANICA, 2010, 45 (04) : 577 - 583
  • [3] Time-fractional radial diffusion in hollow geometries
    Haitao Qi
    Jiaguo Liu
    Meccanica, 2010, 45 : 577 - 583
  • [4] Existence for Time-Fractional Semilinear Diffusion Equation on the Sphere
    Phuong, N. D.
    Ho Duy Binh
    Ho Thi Kim Van
    Le Dinh Long
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [5] An inverse problem for homogeneous time-fractional diffusion problem on the sphere
    Danh Hua Quoc Nam
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 653 - 662
  • [6] On approximation for time-fractional stochastic diffusion equations on the unit sphere
    Alodat, Tareq
    Le Gia, Quoc T.
    Sloan, Ian H.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 446
  • [7] Dirichlet Problem for Time-Fractional Radial Heat Conduction in a Sphere and Associated Thermal Stresses
    Povstenko, Y. Z.
    JOURNAL OF THERMAL STRESSES, 2011, 34 (01) : 51 - 67
  • [8] On time-fractional relativistic diffusion equations
    Narn-Rueih Shieh
    Journal of Pseudo-Differential Operators and Applications, 2012, 3 : 229 - 237
  • [9] A limit theorem to a time-fractional diffusion
    Clark, Jeremy Thane
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 117 - 156
  • [10] On time-fractional relativistic diffusion equations
    Shieh, Narn-Rueih
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2012, 3 (02) : 229 - 237