The radial diffusion in a sphere of radius R is described using time-fractional diffusion equation. The Caputo fractional derivative of the order 0 <alpha < 2 is used. The Laplace and finite sin-Fourier transforms are employed. The solution is written in terms of the Mittag-Leffler functions. For the first and second time-derivative terms, the obtained solutions reduce to the solutions of the ordinary diffusion and wave equations. Several examples of signaling, source and Cauchy problems are presented. Numerical results are illustrated graphically.
机构:
Rzeszow Univ Technol, Fac Math & Appl Phys, Powstancow Warszawy 8, PL-35959 Rzeszow, Poland
NAS Ukraine, Inst Appl Problems Mech & Math, UA-79060 Lvov, UkraineRzeszow Univ Technol, Fac Math & Appl Phys, Powstancow Warszawy 8, PL-35959 Rzeszow, Poland
Datsko, Bohdan
Podlubny, Igor
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Kosice, BERG Fac, B Nemcovej 3, Kosice 04200, SlovakiaRzeszow Univ Technol, Fac Math & Appl Phys, Powstancow Warszawy 8, PL-35959 Rzeszow, Poland
Podlubny, Igor
Povstenko, Yuriy
论文数: 0引用数: 0
h-index: 0
机构:
Jan Dlugosz Univ Czestochowa, Fac Math & Nat Sci, Armii Krajowej 13-15, PL-42200 Czestochowa, PolandRzeszow Univ Technol, Fac Math & Appl Phys, Powstancow Warszawy 8, PL-35959 Rzeszow, Poland