Off-Grid Frequency Estimation with Random Measurements

被引:0
|
作者
Chen, Xushan [1 ]
Yang, Jibin [2 ]
Sun, Meng [2 ]
Li, Jianfeng [1 ]
机构
[1] Natl Def Univ PLA, Lab Polit Informat, Shanghai, Peoples R China
[2] PLA Univ Sci & Technol, Lab Intelligence Informat Proc, Nanjing, Jiangsu, Peoples R China
关键词
compressive sensing; frequency estimation; random measurement; atomic norm; semidefinite programming;
D O I
10.1587/transfun.E100.A.2493
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In order to significantly reduce the time and space needed, compressive sensing builds upon the fundamental assumption of sparsity under a suitable discrete dictionary. However, in many signal processing applications there exists mismatch between the assumed and the true sparsity bases, so that the actual representative coefficients do not lie on the finite grid discretized by the assumed dictionary. Unlike previous work this paper introduces the unified compressive measurement operator into atomic norm denoising and investigates the problems of recovering the frequency support of a combination of multiple sinusoids from sub-Nyquist samples. We provide some useful properties to ensure the optimality of the unified framework via semidefinite programming (SDP). We also provide a sufficient condition to guarantee the uniqueness of the optimizer with high probability. Theoretical results demonstrate the proposed method can locate the nonzero coefficients on an infinitely dense grid over a wide range of SNR case.
引用
收藏
页码:2493 / 2497
页数:5
相关论文
共 50 条
  • [21] Off-Grid Aware Channel and Covariance Estimation in mmWave Networks
    Anjinappa, Chethan Kumar
    Gurbuz, Ali Cafer
    Yapici, Yavuz
    Guvenc, Ismail
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (06) : 3908 - 3921
  • [22] Off-grid DOA estimation via a deep learning framework
    Huang, Yan
    Zhang, Yanjun
    Tao, Jun
    Wen, Cai
    Liao, Guisheng
    Hong, Wei
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (12)
  • [23] Off-grid DOA estimation via a deep learning framework
    Yan HUANG
    Yanjun ZHANG
    Jun TAO
    Cai WEN
    Guisheng LIAO
    Wei HONG
    ScienceChina(InformationSciences), 2023, 66 (12) : 222 - 237
  • [24] An Off-Grid DOA Estimation Based on Iterative Adaptive Approach
    Jie Y.
    Zhang W.
    Li X.
    Ye X.
    Wang H.
    Tao S.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2023, 45 (10): : 3805 - 3811
  • [25] Root Sparse Bayesian Learning for Off-Grid DOA Estimation
    Dai, Jisheng
    Bao, Xu
    Xu, Weichao
    Chang, Chunqi
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (01) : 46 - 50
  • [26] Off-Grid DOA Estimation Based on Noise Subspace Fitting
    Duan, Huiping
    Qian, Zhigang
    Wang, Yanyan
    2015 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2015, : 675 - 678
  • [27] Rethinking the off-grid city
    Caprotti, Federico
    de Groot, Jiska
    Bobbins, Kerry
    Mathebula, Norman
    Butler, Catherine
    Moorlach, Mascha
    Schloemann, Hendrik
    Densmore, Alex
    Finlay, Kimenthrie
    URBAN GEOGRAPHY, 2022, 43 (08) : 1217 - 1230
  • [28] Sheila Hicks: Off-Grid
    Thomas, Greg
    BURLINGTON MAGAZINE, 2022, 164 (1434): : 926 - 929
  • [29] Variational Bayesian Gaussian mixture model for off-grid DOA estimation
    Guan, Shanwen
    Li, Ji
    Luo, Xiaonan
    ELECTRONICS LETTERS, 2024, 60 (03)
  • [30] Multitaper spectral estimation and off-grid compressive sensing: MSE estimates
    Abreu, Luis Daniel
    Romero, Jose Luis
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 188 - 191