CircNNTSR: An R Package for the Statistical Analysis of Circular, Multivariate Circular, and Spherical Data Using Nonnegative Trigonometric Sums

被引:17
|
作者
Jose Fernandez-Duran, Juan [1 ]
Mercedes Gregorio-Dominguez, Maria [2 ]
机构
[1] Inst Tecnol Autonomo Mexico, Sch Business, Rio Hondo 1, Mexico City 01080, DF, Mexico
[2] Inst Tecnol Autonomo Mexico, Dept Actuarial Sci, Rio Hondo 1, Mexico City 01080, DF, Mexico
来源
JOURNAL OF STATISTICAL SOFTWARE | 2016年 / 70卷 / 06期
关键词
Fourier series; likelihood ratio test; maximum likelihood estimation; smooth Riemann manifold; ACTIVITY PATTERNS; DISTRIBUTIONS;
D O I
10.18637/jss.v070.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The statistical analysis of circular, multivariate circular, and spherical data is very important in different areas, such as paleomagnetism, astronomy and biology. The use of nonnegative trigonometric sums allows for the construction of flexible probability models for these types of data to model datasets with skewness and multiple modes. The R package CircNNTSR includes functions to plot, fit by maximum likelihood, and simulate models based on nonnegative trigonometric sums for circular, multivariate circular, and spherical data. For maximum likelihood estimation of the models for the three different types of data an efficient Newton-like algorithm on a hypersphere is used. Examples of applications of the functions provided in the CircNNTSR package to actual and simulated datasets are presented and it is shown how the package can be used to test for uniformity, homogeneity, and independence using likelihood ratio tests.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 6 条
  • [1] Distributions for spherical data based on nonnegative trigonometric sums
    J. J. Fernández-Durán
    M. M. Gregorio-Domínguez
    Statistical Papers, 2014, 55 : 983 - 1000
  • [2] Distributions for spherical data based on nonnegative trigonometric sums
    Fernandez-Duran, J. J.
    Gregorio-Dominguez, M. M.
    STATISTICAL PAPERS, 2014, 55 (04) : 983 - 1000
  • [3] Wrapped: An R package for circular data
    Nadarajah, Saralees
    Zhang, Yuanyuan
    PLOS ONE, 2017, 12 (12):
  • [4] Bayesian analysis of circular distributions based on non-negative trigonometric sums
    Jose Fernandez-Duran, Juan
    Mercedes Gregorio-Dominguez, Maria
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (16) : 3175 - 3187
  • [5] gcKrig: An R Package for the Analysis of Geostatistical Count Data Using Gaussian Copulas
    Han, Zifei
    De Oliveira, Victor
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 87 (13): : 1 - 32
  • [6] Data processing in luminescence dating analysis: An exemplary workflow using the R package 'Luminescence'
    Fuchs, Margret C.
    Kreutzer, Sebastian
    Burow, Christoph
    Dietze, Michael
    Fischer, Manfred
    Schmidt, Christoph
    Fuchs, Markus
    QUATERNARY INTERNATIONAL, 2015, 362 : 8 - 13