Detection and Classification of Defects in Plastic Components Using a Deep Learning Approach

被引:0
|
作者
Mameli, Marco [1 ]
Paolanti, Marina [1 ]
Mancini, Adriano [1 ]
Frontoni, Emanuele [1 ]
Zingaretti, Primo [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Informaz, Via Brecce Bianche 12, I-60131 Ancona, Italy
来源
INTELLIGENT AUTONOMOUS SYSTEMS 16, IAS-16 | 2022年 / 412卷
关键词
Intelligent system; Deep learning; Defects classification; Plastic components;
D O I
10.1007/978-3-030-95892-3_53
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tyre brand, its size, model, age and condition monitoring are critical for many vehicle users. The detection and the recognition of plastic components defects result essential. Image classification has become one of the key applications in image processing and computer vision domain. It has been used in several fields such as medical area and intelligent transportation. Recently, results of deep neural networks (DNN) foreshadow the advent of reliable classifiers to perform such visual tasks. DNNs require learning of many parameters from raw images; hence, several images with class annotations are needed. These images are very expensive since pixel-level annotations are required. In this paper, we introduce a deep learning approach to detect and classify five classes of plastic components defects. A novel dataset of tyre images is collected and the images are manually labelled. The experiments are conducted on this dataset by comparing the performances of three DNNs such as UNet, FPN and LinkNet. Results yield high values of F1-score and show the effectiveness and the suitability of the proposed approach.
引用
收藏
页码:713 / 722
页数:10
相关论文
共 50 条
  • [21] Ransomware Detection and Classification Using Machine Learning and Deep Learning
    Ouerdi, Noura
    Mejjout, Brahim
    Laaroussi, Khadija
    Kasmi, Mohammed Amine
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 194 - 201
  • [22] Monkeypox Detection and Classification Using Deep Learning Based Features Selection and Fusion Approach
    Maqsood, Sarmad
    Damagevieius, Robertas
    2023 IEEE INTERNATIONAL SYSTEMS CONFERENCE, SYSCON, 2023,
  • [23] Deep Learning Approach to UAV Detection and Classification by Using Compressively Sensed RF Signal
    Mo, Yongguang
    Huang, Jianjun
    Qian, Gongbin
    SENSORS, 2022, 22 (08)
  • [24] USING DEEP LEARNING FOR DETECTION AND CLASSIFICATION OF INSECTS ON TRAPS
    Teixeira, Ana Claudia
    Ribeiro, Jose
    Neto, Alexandre
    Morais, Raul
    Sousa, Joaquim J.
    Cunha, Antonio
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5746 - 5749
  • [25] Lung Cancer Detection and Classification using Deep Learning
    Tekade, Ruchita
    Rajeswari, K.
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [26] Detection and Classification of Mosquito Larvae Based on Deep Learning Approach
    Nainggolan, Pauzi Ibrahim
    Efendi, Syahril
    Budiman, Mohammad Andri
    Lydia, Maya Silvi
    Rahmat, Romi Fadillah
    Bukit, Dhani Syahputra
    Salmah, Umi
    Indirawati, Sri Malem
    Sulaiman, Riza
    ENGINEERING LETTERS, 2025, 33 (01) : 198 - 206
  • [27] Probabilistic Ship Detection and Classification Using Deep Learning
    Kim, Kwanghyun
    Hong, Sungjun
    Choi, Baehoon
    Kim, Euntai
    APPLIED SCIENCES-BASEL, 2018, 8 (06):
  • [28] Robust Deep Learning Approach for Brain Tumor Classification and Detection
    Bindu, J. Hima
    Meghana, Appidi
    Kommula, Sravani
    Varma, Jagu Abhishek
    ADVANCES IN SIGNAL PROCESSING AND COMMUNICATION ENGINEERING, ICASPACE 2021, 2022, 929 : 427 - 437
  • [29] Temperate fish detection and classification: a deep learning based approach
    Kristian Muri Knausgård
    Arne Wiklund
    Tonje Knutsen Sørdalen
    Kim Tallaksen Halvorsen
    Alf Ring Kleiven
    Lei Jiao
    Morten Goodwin
    Applied Intelligence, 2022, 52 : 6988 - 7001
  • [30] Deep Learning Approach to Human Osteosarcoma Cell Detection and Classification
    D'Acunto, Mario
    Martinelli, Massimo
    Moroni, Davide
    MULTIMEDIA AND NETWORK INFORMATION SYSTEMS, 2019, 833 : 353 - 361