Detection and Classification of Defects in Plastic Components Using a Deep Learning Approach

被引:0
|
作者
Mameli, Marco [1 ]
Paolanti, Marina [1 ]
Mancini, Adriano [1 ]
Frontoni, Emanuele [1 ]
Zingaretti, Primo [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Informaz, Via Brecce Bianche 12, I-60131 Ancona, Italy
来源
INTELLIGENT AUTONOMOUS SYSTEMS 16, IAS-16 | 2022年 / 412卷
关键词
Intelligent system; Deep learning; Defects classification; Plastic components;
D O I
10.1007/978-3-030-95892-3_53
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tyre brand, its size, model, age and condition monitoring are critical for many vehicle users. The detection and the recognition of plastic components defects result essential. Image classification has become one of the key applications in image processing and computer vision domain. It has been used in several fields such as medical area and intelligent transportation. Recently, results of deep neural networks (DNN) foreshadow the advent of reliable classifiers to perform such visual tasks. DNNs require learning of many parameters from raw images; hence, several images with class annotations are needed. These images are very expensive since pixel-level annotations are required. In this paper, we introduce a deep learning approach to detect and classify five classes of plastic components defects. A novel dataset of tyre images is collected and the images are manually labelled. The experiments are conducted on this dataset by comparing the performances of three DNNs such as UNet, FPN and LinkNet. Results yield high values of F1-score and show the effectiveness and the suitability of the proposed approach.
引用
收藏
页码:713 / 722
页数:10
相关论文
共 50 条
  • [1] CASTING DEFECTS DETECTION IN ALUMINUM ALLOYS USING DEEP LEARNING: A CLASSIFICATION APPROACH
    Nikolic, Filip
    Stajduhar, Ivan
    Canadija, Marko
    INTERNATIONAL JOURNAL OF METALCASTING, 2023, 17 (01) : 386 - 398
  • [2] Casting Defects Detection in Aluminum Alloys Using Deep Learning: a Classification Approach
    Filip Nikolić
    Ivan Štajduhar
    Marko Čanađija
    International Journal of Metalcasting, 2023, 17 : 386 - 398
  • [3] Detection and classification of painting defects using deep learning
    Adachi, Kazune
    Natori, Takahiro
    Aikawa, Naoyuki
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,
  • [4] Detection and Classification of Fabric Defects Using Deep Learning Algorithms
    Geze, Recep Ali
    Akbas, Ayhan
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2024, 27 (01):
  • [5] Detection and classification of cervical cancer images using CEENET deep learning approach
    Subarna, T. G.
    Sukumar, P.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 3695 - 3707
  • [6] Novel Approach Using Deep Learning for Intrusion Detection and Classification of the Network Traffic
    Ahmad, Shahbaz
    Arif, Fahim
    Zabeehullah
    Iltaf, Naima
    2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA 2020), 2020,
  • [7] Footballer Detection on Position Based Classification Recognition using Deep Learning Approach
    Rashid, Fadilla Atyka Nor
    Liew, Siaw-Hong
    2022 INTERNATIONAL CONFERENCE ON GREEN ENERGY, COMPUTING AND SUSTAINABLE TECHNOLOGY (GECOST), 2022, : 193 - 197
  • [8] Enhanced Fish Species Detection and Classification Using a Novel Deep Learning Approach
    Iqtait, Musab
    Alqaryouti, Marwan Harb
    Sadeq, Ala Eddin
    Aburomman, Ahmad
    Baniata, Mahmoud
    Mustafa, Zaid
    Chan, Huah Yong
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (10) : 1062 - 1067
  • [9] Drone Detection and Classification using Deep Learning
    Behera, Dinesh Kumar
    Raj, Arockia Bazil
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1012 - 1016
  • [10] Lung Disease Detection and Classification with Deep Learning Approach
    Chatchaiwatkul, Araya
    Phonsuphee, Pasuk
    Mangalmurti, Yurananatul
    Wattanapongsakorn, Naruemon
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,