Stable convergence theorems for infinite products and powers of nonexpansive mappings

被引:35
作者
Butnariu, Dan [2 ]
Reich, Simeon [1 ]
Zaslavski, Alexander J. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Univ Haifa, Dept Math, IL-31999 Haifa, Israel
基金
以色列科学基金会;
关键词
amalgamated operators method; complete metric space; convex feasibility problem; fixed point; infinite product; weak ergodic theorem;
D O I
10.1080/01630560801998161
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that several previously established convergence theorems for infinite products and powers of nonexpansive mappings continue to hold even when summablee computational errors are present. Such results find application in methods for solving convex feasibility and optimization problems.
引用
收藏
页码:304 / 323
页数:20
相关论文
共 28 条
[1]  
[Anonymous], 2001, STUD COMPUT MATH
[2]  
[Anonymous], 1971, DIFFERENTIABLE DYNAM
[3]  
AUBLIN JP, 1984, APPL NONLINEAR ANAL
[4]  
Bauschke H.H., 1997, CONT MATH, V204, P1
[5]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[6]  
Bruck RE, 1977, HOUSTON J MATH, V3, P459
[7]  
Butnariu D, 2006, FIXED POINT THEORY I, P11
[8]   Stable Convergence Behavior Under Summable Perturbations of a Class of Projection Methods for Convex Feasibility and Optimization Problems [J].
Butnariu, Dan ;
Davidi, Ran ;
Herman, Gabor T. ;
Kazantsev, Ivan G. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) :540-547
[9]  
Censor Y., 1997, PARALLEL OPTIMIZATIO
[10]  
Cimmino G, 1938, RIC SCI PROGR TECN E, V1, P326