Semi-supervised deep learning framework for milk analysis using NIR spectrometers

被引:20
|
作者
Said, Mai [1 ]
Wahba, Ayman [1 ]
Khalil, Diaa [1 ,2 ]
机构
[1] Ain Shams Univ, Fac Engn, Cairo 11517, Egypt
[2] Si Ware Syst, PO 11361 Heliopolis, Cairo, Egypt
关键词
Semi -supervised learning; Deep learning; Chemometrics; NIR; Milk analysis; Milk adulteration; FAT;
D O I
10.1016/j.chemolab.2022.104619
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning DL models of NIR spectral data outperforms traditional chemometrics algorithms specially when analyzing complicated materials spectra with overlapping bands. The wide spread of portable miniaturized spectrometers allows the collection of larger datasets which is necessary to build robust DL models. However, with the high cost of chemical referencing most of the collected samples are unreferenced (unsupervised). In this paper, a semi-supervised DL algorithm is proposed to provide a robust scalable model across a wider sample space and sensor space. Two cow milk datasets were collected and measured with 14 Neospectra spectrometers. The proposed algorithm is used to predict milk fat content and water adulteration ratio in milk. Results show that with a reduced referenced (supervised) dataset of only 35% of the milk samples and 50% of the spectrometer units augmented with the remaining unsupervised dataset we can predict milk fat content with R2 = 0.95 and RMSE = 0.22 and milk water adulteration with R2 = 0.8 and RMSE = 0.12.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Assessment of anemia recovery using peripheral blood smears by deep semi-supervised learning
    Yan, Qianming
    Zhang, Yingying
    Wei, Lei
    Liu, Xuehui
    Wang, Xiaowo
    ANNALS OF HEMATOLOGY, 2025, : 1527 - 1539
  • [42] SEMI-SUPERVISED DEEP LEARNING SEISMIC IMPEDANCE INVERSION USING GENERATIVE ADVERSARIAL NETWORKS
    Meng, Delin
    Wu, Bangyu
    Liu, Naihao
    Chen, Wenchao
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1393 - 1396
  • [43] Semi-supervised Learning Using Generative Adversarial Networks
    Chang, Chuan-Yu
    Chen, Tzu-Yang
    Chung, Pau-Choo
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 892 - 896
  • [44] GTRF: A general deep learning framework for tuples recognition towards supervised, semi-supervised and unsupervised paradigms
    Xiong, Qingsong
    Yuan, Cheng
    He, Bin
    Xiong, Haibei
    Kong, Qingzhao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 124
  • [45] Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes
    Shahri, Morteza Pourreza
    Kahanda, Indika
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [46] Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes
    Morteza Pourreza Shahri
    Indika Kahanda
    BMC Bioinformatics, 22
  • [47] Developing Sustainable Classification of Diseases via Deep Learning and Semi-Supervised Learning
    Yin, Chunwu
    Chen, Zhanbo
    HEALTHCARE, 2020, 8 (03)
  • [48] A semi-supervised machine learning framework for microRNA classification
    Hassani, Mohsen Sheikh
    Green, James R.
    HUMAN GENOMICS, 2019, 13 (Suppl 1) : 43
  • [49] Metric learning by similarity network for deep semi-supervised learning
    Wu, Sanyou
    Feng, Xingdong
    Zhou, Fan
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 995 - 1002
  • [50] ESA*: A generic framework for semi-supervised inductive learning
    Yang, Shuyi
    Ienco, Dino
    Esposito, Roberto
    Pensa, Ruggero G.
    NEUROCOMPUTING, 2021, 447 (447) : 102 - 117