Estimation of solar radiation using support vector regression

被引:12
|
作者
Bhola, Parveen [1 ]
Bhardwaj, Saurabh [1 ]
机构
[1] Thapar Inst Engn & Technol, Dept Elect & Instrumentat Engn, Patiala 147004, Punjab, India
关键词
Support vector regression; Meteorological parameters; Global horizontal solar radiation; FUZZY-LOGIC; PREDICTION; MODEL; INSOLATION; SYSTEM;
D O I
10.1080/02522667.2019.1578093
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
The solar radiation estimation is important parameter of interest in the Photovoltaic system installation, maintenance and performance evaluation. In the present work support vector regression (SVR) is used for the estimation of global horizontal solar radiation (GHSR). The model evaluates the performance of SVR model with different combinations of metrological parameters such as ambient temperature, humidity, atmospheric pressure etc. The data of three years from 2009-2011 is acquired from the National Institute of Solar Energy (NISE) Gurugram, India. The performance metric for estimation is the root means square error (RMSE). The results of SVR model were compared and found superior with other state of the art models like Hidden Markov Model and Artificial Neural Networks. After the analysis of results, it was found that temperature is the most important parameter along with atmospheric pressure, relative humidity, day number and wind speed.
引用
收藏
页码:339 / 350
页数:12
相关论文
共 50 条
  • [21] Optimized support vector regression for drilling rate of penetration estimation
    Bodaghi, Asadollah
    Ansari, Hamid Reza
    Gholami, Mahsa
    OPEN GEOSCIENCES, 2015, 7 (01): : 870 - 879
  • [22] Using tabu search to configure support vector regression for effort estimation
    A. Corazza
    S. Di Martino
    F. Ferrucci
    C. Gravino
    F. Sarro
    E. Mendes
    Empirical Software Engineering, 2013, 18 : 506 - 546
  • [23] RETRACTED: Potential of support vector regression for solar radiation prediction in Nigeria (Retracted Article)
    Olatomiwa, Lanre
    Mekhilef, Saad
    Shamshirband, Shahaboddin
    Petkovic, Dalibor
    NATURAL HAZARDS, 2015, 77 (02) : 1055 - 1068
  • [24] Composite support vector quantile regression estimation
    Jooyong Shim
    Changha Hwang
    Kyungha Seok
    Computational Statistics, 2014, 29 : 1651 - 1665
  • [25] Composite support vector quantile regression estimation
    Shim, Jooyong
    Hwang, Changha
    Seok, Kyungha
    COMPUTATIONAL STATISTICS, 2014, 29 (06) : 1651 - 1665
  • [26] Fuzzy support vector machine for regression estimation
    Sun, ZH
    Sun, YX
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 3336 - 3341
  • [27] Optic flow estimation by support vector regression
    Colliez, Johan
    Dufrenois, Franck
    Hamad, Denis
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2006, 19 (07) : 761 - 768
  • [28] Location estimation via support vector regression
    Wu, Zhi-Li
    Li, Chun-hung
    Ng, Joseph Kee-Yin
    Leung, Karl R. P. H.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2007, 6 (03) : 311 - 321
  • [29] Estimation of Electrically-Evoked Knee Torque from Mechanomyography Using Support Vector Regression
    Ibitoye, Morufu Olusola
    Hamzaid, Nur Azah
    Wahab, Ahmad Khairi Abdul
    Hasnan, Nazirah
    Olatunji, Sunday Olusanya
    Davis, Glen M. O. A. M.
    SENSORS, 2016, 16 (07)
  • [30] Reliability estimation using an integrated support vector regression-variable neighborhood search model
    Yazdani, Maziar
    Babagolzadeh, Mahla
    Kazemitash, Navid
    Saberi, Morteza
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2019, 15 : 103 - 110