Opportunities and challenges of big data for the social sciences: The case of genomic data

被引:10
|
作者
Liu, Hexuan [1 ,3 ,4 ]
Guo, Guang [1 ,2 ,3 ]
机构
[1] Univ N Carolina, Dept Sociol, Chapel Hill, NC 27500 USA
[2] Univ N Carolina, Carolina Ctr Genome Sci, Chapel Hill, NC USA
[3] Univ N Carolina, Carolina Populat Ctr, Chapel Hill, NC USA
[4] Univ Cincinnati, Sch Criminal Justice, Cincinnati, OH 45221 USA
关键词
Genomic data; Gene-environment interaction; GENE-ENVIRONMENT INTERACTIONS; COMMON SNPS EXPLAIN; BODY-MASS INDEX; WIDE ASSOCIATION; EDUCATIONAL-ATTAINMENT; SOCIOECONOMIC-STATUS; POLYGENIC RISK; COMPLEX TRAITS; WHOLE-GENOME; HERITABILITY;
D O I
10.1016/j.ssresearch.2016.04.016
中图分类号
C91 [社会学];
学科分类号
030301 ; 1204 ;
摘要
In this paper, we draw attention to one unique and valuable source of big data, genomic data, by demonstrating the opportunities they provide to social scientists. We discuss different types of large-scale genomic data and recent advances in statistical methods and computational infrastructure used to address challenges in managing and analyzing such data. We highlight how these data and methods can be used to benefit social science research. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:13 / 22
页数:10
相关论文
共 50 条
  • [31] Biological data sciences in genome research
    Schatz, Michael C.
    GENOME RESEARCH, 2015, 25 (10) : 1417 - 1422
  • [32] Using National Data Sets to Improve the Health and Mental Health of Black Americans: Challenges and Opportunities
    Griffith, Derek M.
    Neighbors, Harold W.
    Johnson, Jonetta
    CULTURAL DIVERSITY & ETHNIC MINORITY PSYCHOLOGY, 2009, 15 (01) : 86 - 95
  • [33] Big Genome Data Classification with Random Forests Using VariantSpark
    Devi, A. Shobana
    Maragatham, G.
    INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGIES (ICCNCT 2018), 2019, 15 : 599 - 614
  • [34] Spatiotemporal Analysis to Observe Gender Based Check-In Behavior by Using Social Media Big Data: A Case Study of Guangzhou, China
    Muhammad, Rizwan
    Zhao, Yaolong
    Liu, Fan
    SUSTAINABILITY, 2019, 11 (10)
  • [35] Implications of Big Data for cell biology
    Dolinski, Kara
    Troyanskaya, Olga G.
    MOLECULAR BIOLOGY OF THE CELL, 2015, 26 (14) : 2575 - 2578
  • [36] Using pooled data for genomic prediction in a bivariate framework with missing data
    Baller, Johnna L.
    Kachman, Stephen D.
    Kuehn, Larry A.
    Spangler, Matthew L.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2022, 139 (05) : 489 - 501
  • [37] Kin Genomic Data Inference Attacks Through Factor Graph
    Shang, Hui
    He, Zaobo
    2019 IEEE 16TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SENSOR SYSTEMS WORKSHOPS (MASSW 2019), 2019, : 13 - 18
  • [38] Analyzing genomic data: understanding the genome
    Fernandez-Suarez, Xose M.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2012, 2 (02) : 116 - 137
  • [39] Immersive Intelligence Genomic Data Visualisation
    Lau, Chng Wei
    Quang Vinh Nguyen
    Qu, Zhonglin
    Simoff, Simeon
    Catchpoole, Daniel
    PROCEEDINGS OF THE AUSTRALASIAN COMPUTER SCIENCE WEEK MULTICONFERENCE (ACSW 2019), 2019,
  • [40] A Robust Method for the Interpretation of Genomic Data
    Hind, Jade
    Hussain, Abir
    Al-jumeily, Dhiya
    Abdulaimma, Basma
    Montanez, Casimiro Aday Curbelo
    Lisboa, Paulo
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 3385 - 3390