Identification of a subunit interface in transthyretin amyloid fibrils: Evidence for self-assembly from oligomeric building blocks

被引:62
|
作者
Serag, AA
Altenbach, C
Gingery, M
Hubbell, WL
Yeates, TO [1 ]
机构
[1] Univ Calif Los Angeles, Dept Energy, Lab Struct Biol & Mol Med, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Chem & Biochem, Jules Stein Eye Inst, Mol Biol Inst,Sch Med, Los Angeles, CA 90095 USA
关键词
D O I
10.1021/bi010655s
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Amyloid and prion diseases appear to stem from the conversion of normally folded proteins into insoluble, fiber-like assemblies. Despite numerous structural studies, a detailed molecular characterization of amyloid fibrils remains elusive. In particular, models of amyloid fibrils proposed thus far have not adequately defined the constituent protein subunit interactions. To further our understanding of amyloid structure, we employed thiol-specific cross-linking and site-directed spin labeling to identify specific protein-protein associations in transthyretin (TTR) amyloid fibrils. We find that certain cysteine mutants of TTR, when dimerized by chemical cross-linkers, still form fibers under typical in vitro fibrillogenic conditions. In addition, site-directed spin labeling of many residues at the natural dimer interface reveals that their spatial proximity is preserved in the fibrillar state even in the absence of cross-linking constraints. Here, we present the first view of a subunit interface in TTR fibers and show that it is very similar to one of the natural dimeric interchain associations evident in the structure of soluble TTR. The results clarify varied models of amyloidogenesis by demonstrating that transthyretin amyloid fibrils may assemble from oligomeric protein building blocks rather than structurally rearranged monomers.
引用
收藏
页码:9089 / 9096
页数:8
相关论文
共 50 条
  • [1] Peptide Self-assembly: From Toxins to Amyloid Fibrils and Nanotubes
    Rawat, Anoop
    Nagaraj, Ramakrishnan
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2014, 14 (06) : 740 - 746
  • [2] Molecular recognition and self-assembly of amyloid fibrils
    Gazit, E
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 154A - 154A
  • [3] Self-Assembly of Ovalbumin into Amyloid and Non-Amyloid Fibrils
    Lara, Cecile
    Gourdin-Bertin, Simon
    Adamcik, Jozef
    Bolisetty, Sreenath
    Mezzenga, Raffaele
    BIOMACROMOLECULES, 2012, 13 (12) : 4213 - 4221
  • [4] A possible role for π-stacking in the self-assembly of amyloid fibrils
    Gazit, E
    FASEB JOURNAL, 2002, 16 (01): : 77 - 83
  • [5] Structural insights into the self-assembly mechanism of amyloid fibrils
    Radford, Sheena E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [6] Self-Assembly of Amyloid Fibrils That Display Active Enzymes
    Zhou, Xiao-Ming
    Entwistle, Aiman
    Zhang, Hong
    Jackson, Antony P.
    Mason, Thomas O.
    Shimanovich, Ulyana
    Knowles, Tuomas P. J.
    Smith, Andrew T.
    Sawyer, Elizabeth B.
    Perrett, Sarah
    CHEMCATCHEM, 2014, 6 (07) : 1961 - 1968
  • [7] Self-assembly of penta-selenopeptides into amyloid fibrils
    Gokula, Ram P.
    Mahato, Jaladhar
    Singh, Harkesh B.
    Chowdhury, Arindam
    CHEMICAL COMMUNICATIONS, 2018, 54 (83) : 11697 - 11700
  • [8] ROLE OF SUBUNIT INTERACTIONS IN THE SELF-ASSEMBLY OF OLIGOMERIC PROTEINS
    GAREL, JR
    MARTEL, A
    MULLER, K
    IKAI, A
    MORISHIMA, N
    SUTOH, K
    ADVANCES IN BIOPHYSICS, 1984, 18 : 91 - 113
  • [9] Anisotropic Self-Assembly from Isotropic Colloidal Building Blocks
    Rey, Marcel
    Law, Adam D.
    Buzza, D. Martin A.
    Vogel, Nicolas
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (48) : 17464 - 17473
  • [10] Self-assembly with organopalladium building blocks.
    Loeb, SJ
    Hall, JR
    Price, C
    Wisner, JA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U947 - U947