Solid-state devices for single-photon generation

被引:0
|
作者
Santori, C. [1 ]
Fu, K. -M. [1 ]
Fattal, D. [1 ]
Beausoleil, R. G. [1 ]
机构
[1] Hewlett Packard Labs, Palo Alto, CA 94304 USA
来源
QUANTUM ELECTRONICS METROLOGY | 2008年 / 6906卷
关键词
ROOM-TEMPERATURE; QUANTUM COMPUTATION; TURNSTILE DEVICE; DIAMOND; ION; MICROCAVITIES; INTERFERENCE; RESONANCE; DYNAMICS; CENTERS;
D O I
10.1117/12.772273
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
General requirements for single-photon devices in various applications are presented and compared with experimental progress to date. The quantum information applications that currently appear the most promising require a matter qubit-enabled single-photon source, where the emitted photon state is linked to the state of a long-lived quantum system such as an electron spin. The nitrogen-vacancy center in diamond is a promising solid-state system for realizing such a device due to its long-lived electron spin coherence, optical addressability, and ability to couple to a manageable number of nuclear spins. This system is discussed in detail, and experimental results from our laboratory are shown. A critical component of such a device is an optical microcavity to enhance the coupling between the nitrogen-vacancy center and a single photon, and we discuss theoretically the requirements for achieving this enhancement.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Room temperature processing for solid-state electrochromic devices on single substrate: From glass to flexible plastic
    Cossari, Pierluigi
    Cannavale, Alessandro
    Gambino, Salvatore
    Gigli, Giuseppe
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 155 : 411 - 420
  • [32] Quantum entanglement between an optical photon and a solid-state spin qubit
    Togan, E.
    Chu, Y.
    Trifonov, A. S.
    Jiang, L.
    Maze, J.
    Childress, L.
    Dutt, M. V. G.
    Sorensen, A. S.
    Hemmer, P. R.
    Zibrov, A. S.
    Lukin, M. D.
    NATURE, 2010, 466 (7307) : 730 - U4
  • [33] Fiber-coupled pillar array as a highly pure and stable single-photon source
    Odashima, S.
    Sasakura, H.
    Nakajima, H.
    Kumano, H.
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (22)
  • [34] Optimization of periodic single-photon sources
    Adam, Peter
    Mechler, Matyas
    Santa, Imre
    Koniorczyk, Matyas
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [35] Single-photon atomic force microscopy
    Zhang Jun
    Analytical and Bioanalytical Chemistry, 2010, 397 : 987 - 990
  • [36] Single-photon atomic force microscopy
    Jun, Zhang
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 397 (03) : 987 - 990
  • [37] Quantum teleportation from a propagating photon to a solid-state spin qubit
    Gao, W. B.
    Fallahi, P.
    Togan, E.
    Delteil, A.
    Chin, Y. S.
    Miguel-Sanchez, J.
    Imamoglu, A.
    NATURE COMMUNICATIONS, 2013, 4
  • [38] Toward Molecular Spin Qubit Devices: Integration of Magnetic Molecules into Solid-State Devices
    Fursina, Alexandra A.
    Sinitskii, Alexander
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (07) : 3531 - 3545
  • [39] Entangling nuclear spins by dissipation in a solid-state system
    Wang, Xin
    Zhang, Huili
    Zhang, Wengang
    Ouyang, Xiaolong
    Huang, Xianzhi
    Yu, Yefei
    Liu, Yanqing
    Chang, Xiuying
    Deng, Dong-ling
    Duan, Luming
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [40] Organic molecule single-photon sources
    Gaither-Ganim, Moses B.
    Newlon, Scott A.
    Anderson, Michael G.
    Lee, Bumsu
    OXFORD OPEN MATERIALS SCIENCE, 2023, 3 (01):