Theory of MBE Growth of Nanowires on Reflecting Substrates

被引:13
|
作者
Dubrovskii, Vladimir G. [1 ]
机构
[1] St Petersburg State Univ, Fac Phys, Univ Skaya Emb 13B, St Petersburg 199034, Russia
关键词
III-V nanowires; molecular beam epitaxy; reflecting substrate; re-emission; shadowing; nanowire length and radius; modeling; DIFFUSION MECHANISM; QUANTUM DOTS; GAAS; NANOWHISKERS; EPITAXY;
D O I
10.3390/nano12020253
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Selective area growth (SAG) of III-V nanowires (NWs) by molecular beam epitaxy (MBE) and related epitaxy techniques offer several advantages over growth on unpatterned substrates. Here, an analytic model for the total flux of group III atoms impinging NWs is presented, which accounts for specular re-emission from the mask surface and the shadowing effect in the absence of surface diffusion from the substrate. An expression is given for the shadowing length of NWs corresponding to the full shadowing of the mask. Axial and radial NW growths are considered in different stages, including the stage of purely axial growth, intermediate stage with radial growth, and asymptotic stage, where the NWs receive the maximum flux determined by the array pitch. The model provides good fits with the data obtained for different vapor-liquid-solid and catalyst-free III-V NWs.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Heteroepitaxial Growth of Ge Nanowires on Si Substrates
    Artoni, Pietro
    Irrera, Alessia
    Pecora, Emanuele Francesco
    Boninelli, Simona
    Spinella, Corrado
    Priolo, Francesco
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2012, 2012
  • [32] Growth of GaInP on misoriented substrates using solid source MBE
    Orsila, S
    Tukiainen, A
    Uusimaa, P
    Dekker, J
    Leinonen, T
    Pessa, M
    JOURNAL OF CRYSTAL GROWTH, 2001, 227 : 249 - 254
  • [33] MBE growth process of ferromagnetic MnAs on Si(111) substrates
    Nazmul, AM
    Banshchikov, AG
    Shimizu, H
    Tanaka, M
    JOURNAL OF CRYSTAL GROWTH, 2001, 227 : 874 - 881
  • [34] Optical characterisation of catalyst free GaAsP and GaAsP core-shell nanowires grown directly on Si substrates by MBE
    Orchard, Jonathan R.
    Zhang, Yunyan
    Wu, Jiang
    Lui, Huyun
    Mowbray, David
    QUANTUM DOTS AND NANOSTRUCTURES: SYNTHESIS CHARACTERIZATION AND MODELING XII, 2015, 9373
  • [35] Surfactant-mediated MBE growth of β-SiC on Si substrates
    Zekentes, K
    Tsagaraki, K
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1999, 61-2 : 559 - 562
  • [36] Growth of InGaN nanowires on a (111)Si substrate by RF-MBE
    Tabata, Takuya
    Paek, Jihyun
    Honda, Yoshio
    Yamaguchi, Masahito
    Amano, Hiroshi
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 3-4, 2012, 9 (3-4): : 646 - 649
  • [37] MBE Growth and Properties of ZnTe- and CdTe-Based Nanowires
    Wojtowicz, T.
    Janik, E.
    Zaleszczyk, W.
    Sadowski, J.
    Karczewski, G.
    Dluzewski, P.
    Kret, S.
    Szuszkiewicz, W.
    Dynowska, E.
    Domagala, J.
    Aleszkiewicz, M.
    Baczewski, L. T.
    Petroutchik, A.
    Presz, A.
    Pacuski, W.
    Golnik, A.
    Kossacki, P.
    Morhange, J. F.
    Kirmse, H.
    Neumann, W.
    Caliebe, W.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 53 (05) : 3055 - 3063
  • [38] SEMICONDUCTOR NANOWIRES IN InP AND RELATED MATERIAL SYSTEMS: MBE GROWTH AND PROPERTIES
    Cirlin, G. E.
    Dubrovskii, V. G.
    Harmand, J. -C.
    Patriarche, G.
    Glas, F.
    Tchernycheva, M.
    Sartel, C.
    2008 IEEE 20TH INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS (IPRM), 2008, : 550 - +
  • [39] MBE Growth of Ultrathin III-V Nanowires on a Highly Mismatched SiC/Si(111) Substrate
    Reznik, R. R.
    Kotlyar, K. P.
    Shtrom, I. V.
    Soshnikov, I. P.
    Kukushkin, S. A.
    Osipov, A. V.
    Cirlin, G. E.
    SEMICONDUCTORS, 2017, 51 (11) : 1472 - 1476
  • [40] Measurement of nitrogen atomic flux for RF-MBE growth of GaN and AlN on Si substrates
    Ohachi, T.
    Yamabe, N.
    Shimomura, H.
    Shimamura, T.
    Ariyada, O.
    Wada, M.
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (10) : 2987 - 2991