ELLIPTIC FUNCTION SOLUTIONS FOR SOME NONLINEAR PDES IN MATHEMATICAL PHYSICS

被引:0
|
作者
Gurefe, Yusuf [1 ]
Pandir, Yusuf [2 ]
Akturk, Tolga [3 ]
Bulut, Hasan [3 ]
机构
[1] Usak Univ, Fac Econ & Adm Sci, Dept Econometr, TR-64200 Usak, Turkey
[2] Bozok Univ, Fac Sci & Arts, Dept Math, TR-66100 Yozgat, Turkey
[3] Firat Univ, Fac Sci, Dept Math, TR-23100 Elazig, Turkey
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2017年 / 7卷 / 01期
关键词
Extended trial equation method; generalized regularized long wave; generalized Klein-Gordon equation; soliton solutions; elliptic solutions; TRIAL EQUATION METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; EXP-FUNCTION METHOD; EVOLUTION-EQUATIONS; PERIODIC-SOLUTIONS; BURGERS-EQUATION; WAVE SOLUTIONS; SOLITONS; SYSTEM;
D O I
10.11948/2017024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we have constructed various types of soliton solutions of the generalized regularized long wave and generalized nonlinear Klein Gordon equations by the using of the extended trial equation method. Some of the obtained exact traveling wave solutions to these nonlinear problems are the rational function, 1-soliton, singular, the elliptic integral functions F, E, Pi and the Jacobi elliptic function sn solutions. Also, all of the solutions are compared with the exact solutions in literature, and it is seen that some of the solutions computed in this paper are new wave solutions.
引用
收藏
页码:372 / 391
页数:20
相关论文
共 50 条
  • [41] Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method
    Zayed, E. M. E.
    Ibrahim, S. A. Hoda
    CHINESE PHYSICS LETTERS, 2012, 29 (06)
  • [42] A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics
    Kaplan, Melike
    Bekir, Ahmet
    Akbulut, Arzu
    NONLINEAR DYNAMICS, 2016, 85 (04) : 2843 - 2850
  • [43] Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics
    Gurefe, Yusuf
    Sonmezoglu, Abdullah
    Misirli, Emine
    PRAMANA-JOURNAL OF PHYSICS, 2011, 77 (06): : 1023 - 1029
  • [44] Further quality analytical investigation on soliton solutions of some nonlinear PDEs with analyses: Bifurcation, sensitivity, and chaotic phenomena
    Chowdhury, M. Akher
    Miah, M. Mamun
    Rasid, Md Mamunur
    Rehman, Sadique
    Borhan, J. R. M.
    Wazwaz, Abdul-Majid
    Kanan, Mohammad
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 103 : 74 - 87
  • [45] Jacobi elliptic solutions, soliton solutions and other solutions to four higher-order nonlinear Schrodinger equations using two mathematical methods
    Zayed, Elsayed M. E.
    Elshater, Mona E. M.
    OPTIK, 2017, 131 : 1044 - 1062
  • [46] Exact Solutions to Some Nonlinear Time-Fractional Evolution Equations Using the Generalized Kudryashov Method in Mathematical Physics
    Ekici, Mustafa
    SYMMETRY-BASEL, 2023, 15 (10):
  • [47] Soliton Solutions of Mathematical Physics Models Using the Exponential Function Technique
    Javeed, Shumaila
    Alimgeer, Khurram Saleem
    Nawaz, Sidra
    Waheed, Asif
    Suleman, Muhammad
    Baleanu, Dumitru
    Atif, M.
    SYMMETRY-BASEL, 2020, 12 (01):
  • [48] Structure of traveling wave solutions for some nonlinear models via modified mathematical method
    Lu, Dianchen
    Seadawy, Aly R.
    Ali, Asghar
    OPEN PHYSICS, 2018, 16 (01): : 854 - 860
  • [49] On elliptic solutions of a coupled nonlinear Schrodinger system
    Wright, O. C., III
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 264 : 1 - 16
  • [50] Innovative solutions to the 2D nonlinear Schrodinger model in mathematical physics
    Hassan, S. Z.
    Alsaleh, D. M.
    Almulhem, Munerah
    Alomair, R. A.
    Daghestani, A. F.
    Abdelrahman, Mahmoud A. E.
    AIP ADVANCES, 2025, 15 (01)