Electronic Medical Records for Genetic Research: Results of the eMERGE Consortium

被引:226
|
作者
Kho, Abel N. [1 ,2 ]
Pacheco, Jennifer A. [1 ]
Peissig, Peggy L. [3 ]
Rasmussen, Luke [3 ]
Newton, Katherine M. [4 ,5 ]
Weston, Noah [4 ]
Crane, Paul K. [6 ]
Pathak, Jyotishman [7 ]
Chute, Christopher G. [7 ]
Bielinski, Suzette J. [7 ]
Kullo, Iftikhar J. [8 ]
Li, Rongling [9 ]
Manolio, Teri A. [9 ]
Chisholm, Rex L. [1 ]
Denny, Joshua C. [10 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA
[2] Regenstrief Inst Inc, Indianapolis, IN 46202 USA
[3] Marshfield Clin Res Fdn, Marshfield, WI 54449 USA
[4] Grp Hlth Res Inst, Seattle, WA 98101 USA
[5] Univ Washington, Sch Publ Hlth, Seattle, WA 98104 USA
[6] Univ Washington, Sch Med, Seattle, WA 98104 USA
[7] Mayo Clin, Dept Hlth Sci Res, Rochester, MN 55905 USA
[8] Mayo Clin, Dept Internal Med, Rochester, MN 55905 USA
[9] NHGRI, Off Populat Genom, Bethesda, MD 20892 USA
[10] Vanderbilt Univ, Dept Biomed Informat & Med, Nashville, TN 37232 USA
关键词
HEALTH RECORDS; PERSONALIZED MEDICINE; HISTORY INFORMATION; DISCOVERY RESEARCH; AMBULATORY-CARE; QUALITY; DEMENTIA; IDENTIFICATION; NEIGHBORHOOD; ASSOCIATION;
D O I
10.1126/scitranslmed.3001807
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Clinical data in electronic medical records (EMRs) are a potential source of longitudinal clinical data for research. The Electronic Medical Records and Genomics Network (eMERGE) investigates whether data captured through routine clinical care using EMRs can identify disease phenotypes with sufficient positive and negative predictive values for use in genome-wide association studies (GWAS). Using data from five different sets of EMRs, we have identified five disease phenotypes with positive predictive values of 73 to 98% and negative predictive values of 98 to 100%. Most EMRs captured key information (diagnoses, medications, laboratory tests) used to define phenotypes in a structured format. We identified natural language processing as an important tool to improve case identification rates. Efforts and incentives to increase the implementation of interoperable EMRs will markedly improve the availability of clinical data for genomics research.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] The Impact of Electronic Medical Records on Nursing Efficiency
    Thompson, Douglas
    Johnston, Patricia
    Spurr, Cynthia
    JOURNAL OF NURSING ADMINISTRATION, 2009, 39 (10): : 444 - 451
  • [42] Securing electronic medical records transmissions over unsecured communications: An overview for better medical governance
    Alanazi, Hamdan O.
    Jalab, Hamid A.
    Alam, Gazi Mahabubul
    Zaidan, B. B.
    Zaidan, A. A.
    JOURNAL OF MEDICINAL PLANTS RESEARCH, 2010, 4 (19): : 2059 - 2074
  • [43] Practical considerations to guide development of access controls and decision support for genetic information in electronic medical records
    Darcy, Diana C.
    Lewis, Eleanor T.
    Ormond, Kelly E.
    Clark, David J.
    Trafton, Jodie A.
    BMC HEALTH SERVICES RESEARCH, 2011, 11
  • [44] Extracting Primary Open-Angle Glaucoma from Electronic Medical Records for Genetic Association Studies
    Restrepo, Nicole A.
    Farber-Eger, Eric
    Goodloe, Robert
    Haines, Jonathan L.
    Crawford, Dana C.
    PLOS ONE, 2015, 10 (06):
  • [45] Electronic Medical Records Are Not Associated With Improved Documentation in Community Primary Care Practices
    Hahn, Karissa A.
    Ohman-Strickland, Pamela A.
    Cohen, Deborah J.
    Piasecki, Alicja K.
    Crosson, Jesse C.
    Clark, Elizabeth C.
    Crabtree, Benjamin F.
    AMERICAN JOURNAL OF MEDICAL QUALITY, 2011, 26 (04) : 272 - 277
  • [46] A roadmap to precision medicine through post-genomic electronic medical records
    Mendez, Kevin M.
    Reinke, Stacey N.
    Kelly, Rachel S.
    Chen, Qingwen
    Su, Mark
    Mcgeachie, Michael
    Weiss, Scott
    Broadhurst, David I.
    Lasky-Su, Jessica A.
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [47] A Robust e-Epidemiology Tool in Phenotyping Heart Failure with Differentiation for Preserved and Reduced Ejection Fraction: the Electronic Medical Records and Genomics (eMERGE) Network
    Bielinski, Suzette J.
    Pathak, Jyotishman
    Carrell, David S.
    Takahashi, Paul Y.
    Olson, Janet E.
    Larson, Nicholas B.
    Liu, Hongfang
    Sohn, Sunghwan
    Wells, Quinn S.
    Denny, Joshua C.
    Rasmussen-Torvik, Laura J.
    Pacheco, Jennifer Allen
    Jackson, Kathryn L.
    Lesnick, Timothy G.
    Gullerud, Rachel E.
    Decker, Paul A.
    Pereira, Naveen L.
    Ryu, Euijung
    Dart, Richard A.
    Peissig, Peggy
    Linneman, James G.
    Jarvik, Gail P.
    Larson, Eric B.
    Bock, Jonathan A.
    Tromp, Gerard C.
    de Andrade, Mariza
    Roger, Veronique L.
    JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2015, 8 (08) : 475 - 483
  • [48] Morbidity and drug consumption. Comparison of results between the National Health Survey and electronic medical records
    Aguilar-Palacio, Isabel
    Carrera-Lasfuentes, Patricia
    Poblador-Plou, Beatriz
    Prados-Torres, Alexandra
    Jose Rabanaque-Hernandez, M.
    GACETA SANITARIA, 2014, 28 (01) : 41 - 47
  • [49] 4000 Clicks: a productivity analysis of electronic medical records in a community hospital ED
    Hill, Robert G., Jr.
    Sears, Lynn Marie
    Melanson, Scott W.
    AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2013, 31 (11): : 1591 - 1594
  • [50] Malignant hyperthermia susceptibility: utilization of genetic results in an electronic medical record to increase safety
    Baye, Jordan F.
    Petry, Natasha J.
    Jacobson, Shauna L.
    Moore, Michelle M.
    Tucker, Bethany
    Shaaban, Sherin
    Massmann, Amanda K.
    Clark, Nicole M.
    Schultz, April J.
    PHARMACOGENOMICS, 2020, 21 (17) : 1207 - 1215