Electronic Medical Records for Genetic Research: Results of the eMERGE Consortium

被引:226
|
作者
Kho, Abel N. [1 ,2 ]
Pacheco, Jennifer A. [1 ]
Peissig, Peggy L. [3 ]
Rasmussen, Luke [3 ]
Newton, Katherine M. [4 ,5 ]
Weston, Noah [4 ]
Crane, Paul K. [6 ]
Pathak, Jyotishman [7 ]
Chute, Christopher G. [7 ]
Bielinski, Suzette J. [7 ]
Kullo, Iftikhar J. [8 ]
Li, Rongling [9 ]
Manolio, Teri A. [9 ]
Chisholm, Rex L. [1 ]
Denny, Joshua C. [10 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA
[2] Regenstrief Inst Inc, Indianapolis, IN 46202 USA
[3] Marshfield Clin Res Fdn, Marshfield, WI 54449 USA
[4] Grp Hlth Res Inst, Seattle, WA 98101 USA
[5] Univ Washington, Sch Publ Hlth, Seattle, WA 98104 USA
[6] Univ Washington, Sch Med, Seattle, WA 98104 USA
[7] Mayo Clin, Dept Hlth Sci Res, Rochester, MN 55905 USA
[8] Mayo Clin, Dept Internal Med, Rochester, MN 55905 USA
[9] NHGRI, Off Populat Genom, Bethesda, MD 20892 USA
[10] Vanderbilt Univ, Dept Biomed Informat & Med, Nashville, TN 37232 USA
关键词
HEALTH RECORDS; PERSONALIZED MEDICINE; HISTORY INFORMATION; DISCOVERY RESEARCH; AMBULATORY-CARE; QUALITY; DEMENTIA; IDENTIFICATION; NEIGHBORHOOD; ASSOCIATION;
D O I
10.1126/scitranslmed.3001807
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Clinical data in electronic medical records (EMRs) are a potential source of longitudinal clinical data for research. The Electronic Medical Records and Genomics Network (eMERGE) investigates whether data captured through routine clinical care using EMRs can identify disease phenotypes with sufficient positive and negative predictive values for use in genome-wide association studies (GWAS). Using data from five different sets of EMRs, we have identified five disease phenotypes with positive predictive values of 73 to 98% and negative predictive values of 98 to 100%. Most EMRs captured key information (diagnoses, medications, laboratory tests) used to define phenotypes in a structured format. We identified natural language processing as an important tool to improve case identification rates. Efforts and incentives to increase the implementation of interoperable EMRs will markedly improve the availability of clinical data for genomics research.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Electronic medical records and physician stress in primary care: results from the MEMO Study
    Babbott, Stewart
    Manwell, Linda Baier
    Brown, Roger
    Montague, Enid
    Williams, Eric
    Schwartz, Mark
    Hess, Erik
    Linzer, Mark
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2014, 21 (E1) : E100 - E106
  • [32] Contributing Factors to Adoption of Electronic Medical Records in Otolaryngology Offices
    Mahboubi, Hossein
    Salibian, Ara A.
    Wu, Edward C.
    Patel, Madhukar S.
    Armstrong, William B.
    LARYNGOSCOPE, 2013, 123 (11): : 2658 - 2663
  • [33] Automatic processing of Electronic Medical Records using Deep Learning
    Osmani, Venet
    Li, Li
    Danieletto, Matteo
    Glicksberg, Benjamin
    Dudley, Joel
    Mayora, Oscar
    PROCEEDINGS OF THE 12TH EAI INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING TECHNOLOGIES FOR HEALTHCARE (PERVASIVEHEALTH 2018), 2018, : 251 - 257
  • [34] Electronic Medical Records and Efficiency and Productivity During Office Visits
    Furukawa, Michael F.
    AMERICAN JOURNAL OF MANAGED CARE, 2011, 17 (04): : 296 - 303
  • [35] Use of electronic medical records differs by specialty and office settings
    Kokkonen, Erik W. J.
    Davis, Scott A.
    Lin, Hsien-Chang
    Dabade, Tushar S.
    Feldman, Steven R.
    Fleischer, Alan B., Jr.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (E1) : E33 - E38
  • [36] Feasibility of extracting data from electronic medical records for research: an international comparative study
    van Velthoven, Michelle Helena
    Mastellos, Nikolaos
    Majeed, Azeem
    O'Donoghue, John
    Car, Josip
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2016, 16
  • [37] Improving the power of genetic association tests with imperfect phenotype derived from electronic medical records
    Sinnott, Jennifer A.
    Dai, Wei
    Liao, Katherine P.
    Shaw, Stanley Y.
    Ananthakrishnan, Ashwin N.
    Gainer, Vivian S.
    Karlson, Elizabeth W.
    Churchill, Susanne
    Szolovits, Peter
    Murphy, Shawn
    Kohane, Isaac
    Plenge, Robert
    Cai, Tianxi
    HUMAN GENETICS, 2014, 133 (11) : 1369 - 1382
  • [38] Electronic medical records - where to from here?
    Pearce, Christopher
    AUSTRALIAN FAMILY PHYSICIAN, 2009, 38 (07) : 537 - 540
  • [39] Improving diabetes management with electronic medical records
    Varroud-Vial, M.
    DIABETES & METABOLISM, 2011, 37 : S48 - S52
  • [40] Electronic medical records in dermatology: Practical implications
    Kaliyadan, Feroze
    Venkitakrishnan, S.
    Manoj, Jayasree
    Dharmaratnam, A. D.
    INDIAN JOURNAL OF DERMATOLOGY VENEREOLOGY & LEPROLOGY, 2009, 75 (02): : 157 - 161