Electronic Medical Records for Genetic Research: Results of the eMERGE Consortium

被引:226
|
作者
Kho, Abel N. [1 ,2 ]
Pacheco, Jennifer A. [1 ]
Peissig, Peggy L. [3 ]
Rasmussen, Luke [3 ]
Newton, Katherine M. [4 ,5 ]
Weston, Noah [4 ]
Crane, Paul K. [6 ]
Pathak, Jyotishman [7 ]
Chute, Christopher G. [7 ]
Bielinski, Suzette J. [7 ]
Kullo, Iftikhar J. [8 ]
Li, Rongling [9 ]
Manolio, Teri A. [9 ]
Chisholm, Rex L. [1 ]
Denny, Joshua C. [10 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA
[2] Regenstrief Inst Inc, Indianapolis, IN 46202 USA
[3] Marshfield Clin Res Fdn, Marshfield, WI 54449 USA
[4] Grp Hlth Res Inst, Seattle, WA 98101 USA
[5] Univ Washington, Sch Publ Hlth, Seattle, WA 98104 USA
[6] Univ Washington, Sch Med, Seattle, WA 98104 USA
[7] Mayo Clin, Dept Hlth Sci Res, Rochester, MN 55905 USA
[8] Mayo Clin, Dept Internal Med, Rochester, MN 55905 USA
[9] NHGRI, Off Populat Genom, Bethesda, MD 20892 USA
[10] Vanderbilt Univ, Dept Biomed Informat & Med, Nashville, TN 37232 USA
关键词
HEALTH RECORDS; PERSONALIZED MEDICINE; HISTORY INFORMATION; DISCOVERY RESEARCH; AMBULATORY-CARE; QUALITY; DEMENTIA; IDENTIFICATION; NEIGHBORHOOD; ASSOCIATION;
D O I
10.1126/scitranslmed.3001807
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Clinical data in electronic medical records (EMRs) are a potential source of longitudinal clinical data for research. The Electronic Medical Records and Genomics Network (eMERGE) investigates whether data captured through routine clinical care using EMRs can identify disease phenotypes with sufficient positive and negative predictive values for use in genome-wide association studies (GWAS). Using data from five different sets of EMRs, we have identified five disease phenotypes with positive predictive values of 73 to 98% and negative predictive values of 98 to 100%. Most EMRs captured key information (diagnoses, medications, laboratory tests) used to define phenotypes in a structured format. We identified natural language processing as an important tool to improve case identification rates. Efforts and incentives to increase the implementation of interoperable EMRs will markedly improve the availability of clinical data for genomics research.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Copy number variation analysis in the context of electronic medical records and large-scale genomics consortium efforts
    Connolly, John J.
    Glessner, Joseph T.
    Almoguera, Berta
    Crosslin, David R.
    Jarvik, Gail P.
    Sleiman, Patrick M.
    Hakonarson, Hakon
    FRONTIERS IN GENETICS, 2014, 5
  • [22] Anonymization of Longitudinal Electronic Medical Records
    Tamersoy, Acar
    Loukides, Grigorios
    Nergiz, Mehmet Ercan
    Saygin, Yucel
    Malin, Bradley
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2012, 16 (03): : 413 - 423
  • [23] Electronic medical records and diabetes in Spain
    Navarro-Perez, Jorge
    Franch-Nadal, Josep
    Artola-Menendez, Sara
    Diez-Espino, Javier
    Garcia-Soidan, Javier
    AVANCES EN DIABETOLOGIA, 2011, 27 (04): : 128 - 136
  • [24] Electronic medical records and personalized medicine
    Mark A. Hoffman
    Marc S. Williams
    Human Genetics, 2011, 130 : 33 - 39
  • [25] Electronic Medical Records: Friends or Foes?
    Ries, Michael D.
    CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2014, 472 (01) : 16 - 21
  • [26] The Internet and Electronic Transmission of Medical Records
    Sam Campbell
    Gordon L. Gibby
    Susan Collingwood
    Journal of Clinical Monitoring, 1997, 13 : 325 - 334
  • [27] The Internet and electronic transmission of medical records
    Campbell, SG
    Gibby, GL
    Collingwood, S
    JOURNAL OF CLINICAL MONITORING, 1997, 13 (05) : 325 - 334
  • [28] Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network
    Newton, Katherine M.
    Peissig, Peggy L.
    Kho, Abel Ngo
    Bielinski, Suzette J.
    Berg, Richard L.
    Choudhary, Vidhu
    Basford, Melissa
    Chute, Christopher G.
    Kullo, Iftikhar J.
    Li, Rongling
    Pacheco, Jennifer A.
    Rasmussen, Luke V.
    Spangler, Leslie
    Denny, Joshua C.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (E1) : E147 - E154
  • [29] An Audit of Hypertension in Electronic Medical Records
    Bitar, Zouheir Ibrahim
    Elshably, Elasmar Mohamed
    Bitar, Mohammed Zouheir
    KUWAIT MEDICAL JOURNAL, 2015, 47 (01): : 40 - 43
  • [30] Specific Issues of Electronic Medical Records
    Iov, J. C.
    RETHINKING SOCIAL ACTION. CORE VALUES, 2015, : 699 - 704