Electronic Medical Records for Genetic Research: Results of the eMERGE Consortium

被引:231
作者
Kho, Abel N. [1 ,2 ]
Pacheco, Jennifer A. [1 ]
Peissig, Peggy L. [3 ]
Rasmussen, Luke [3 ]
Newton, Katherine M. [4 ,5 ]
Weston, Noah [4 ]
Crane, Paul K. [6 ]
Pathak, Jyotishman [7 ]
Chute, Christopher G. [7 ]
Bielinski, Suzette J. [7 ]
Kullo, Iftikhar J. [8 ]
Li, Rongling [9 ]
Manolio, Teri A. [9 ]
Chisholm, Rex L. [1 ]
Denny, Joshua C. [10 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA
[2] Regenstrief Inst Inc, Indianapolis, IN 46202 USA
[3] Marshfield Clin Res Fdn, Marshfield, WI 54449 USA
[4] Grp Hlth Res Inst, Seattle, WA 98101 USA
[5] Univ Washington, Sch Publ Hlth, Seattle, WA 98104 USA
[6] Univ Washington, Sch Med, Seattle, WA 98104 USA
[7] Mayo Clin, Dept Hlth Sci Res, Rochester, MN 55905 USA
[8] Mayo Clin, Dept Internal Med, Rochester, MN 55905 USA
[9] NHGRI, Off Populat Genom, Bethesda, MD 20892 USA
[10] Vanderbilt Univ, Dept Biomed Informat & Med, Nashville, TN 37232 USA
关键词
HEALTH RECORDS; PERSONALIZED MEDICINE; HISTORY INFORMATION; DISCOVERY RESEARCH; AMBULATORY-CARE; QUALITY; DEMENTIA; IDENTIFICATION; NEIGHBORHOOD; ASSOCIATION;
D O I
10.1126/scitranslmed.3001807
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Clinical data in electronic medical records (EMRs) are a potential source of longitudinal clinical data for research. The Electronic Medical Records and Genomics Network (eMERGE) investigates whether data captured through routine clinical care using EMRs can identify disease phenotypes with sufficient positive and negative predictive values for use in genome-wide association studies (GWAS). Using data from five different sets of EMRs, we have identified five disease phenotypes with positive predictive values of 73 to 98% and negative predictive values of 98 to 100%. Most EMRs captured key information (diagnoses, medications, laboratory tests) used to define phenotypes in a structured format. We identified natural language processing as an important tool to improve case identification rates. Efforts and incentives to increase the implementation of interoperable EMRs will markedly improve the availability of clinical data for genomics research.
引用
收藏
页数:7
相关论文
共 48 条
[1]   Fine Particulate Matter Air Pollution, Proximity to Traffic, and Aortic Atherosclerosis [J].
Allen, Ryan W. ;
Criqui, Michael H. ;
Roux, Ana V. Diez ;
Allison, Matthew ;
Shea, Steven ;
Detrano, Robert ;
Sheppard, Lianne ;
Wong, Nathan D. ;
Stukovsky, Karen Hinckley ;
Kaufman, Joel D. .
EPIDEMIOLOGY, 2009, 20 (02) :254-264
[2]  
[Anonymous], ELECT MED RECORDS GE
[3]   Quality improvement with an electronic health record: Achievable, but not automatic [J].
Baron, Richard J. .
ANNALS OF INTERNAL MEDICINE, 2007, 147 (08) :549-552
[4]   The "Meaningful Use" Regulation for Electronic Health Records [J].
Blumenthal, David ;
Tavenner, Marilyn .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (06) :501-504
[5]   Stimulating the Adoption of Health Information Technology. [J].
Blumenthal, David .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (15) :1477-1479
[6]   Risk of dementia and AD with prior exposure to NSAIDs in an elderly community-based cohort [J].
Breitner, J. C. S. ;
Haneuse, S. J. P. A. ;
Walker, R. ;
Dublin, S. ;
Crane, P. K. ;
Gray, S. L. ;
Larson, E. B. .
NEUROLOGY, 2009, 72 (22) :1899-1905
[7]   Personalized medicine in the era of genomics [J].
Burke, Wylie ;
Psaty, Bruce M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2007, 298 (14) :1682-1684
[8]   Systematic review: Impact of health information technology on quality, efficiency, and costs of medical care [J].
Chaudhry, Basit ;
Wang, Jerome ;
Wu, Shinyi ;
Maglione, Margaret ;
Mojica, Walter ;
Roth, Elizabeth ;
Morton, Sally C. ;
Shekelle, Paul G. .
ANNALS OF INTERNAL MEDICINE, 2006, 144 (10) :742-752
[9]   Genomes for all [J].
Church, GM .
SCIENTIFIC AMERICAN, 2006, 294 (01) :46-54
[10]   A vision of individualized medicine in the context of global health [J].
Cortese, D. A. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2007, 82 (05) :491-493