Ultrastable Hydroxyapatite/Titanium-Dioxide-Supported Gold Nanocatalyst with Strong Metal-Support Interaction for Carbon Monoxide Oxidation

被引:219
作者
Tang, Hailian [1 ,2 ,3 ]
Liu, Fei [1 ]
Wei, Jiake [4 ]
Qiao, Botao [1 ]
Zhao, Kunfeng [5 ]
Su, Yang [1 ]
Jin, Changzi [1 ,2 ]
Li, Lin [1 ]
Liu, Jingyue [4 ]
Wang, Junhu [1 ,2 ]
Zhang, Tao [1 ,2 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Mossbauer Effect Data Ctr, Dalian 116023, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[5] Natl Engn Res Ctr Nanotechnol, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
gold; heterogeneous catalysis; metal-support interactions; nanoparticles; surface chemistry; CO OXIDATION; NANOPARTICLE CATALYSTS; CARBOXYLATE CEMENTS; AU NANOPARTICLES; TEMPERATURE; AU/TIO2; TIO2; ADSORPTION; PLATINUM; ADHESION;
D O I
10.1002/anie.201601823
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Supported Au nanocatalysts have attracted intensive interest because of their unique catalytic properties. Their poor thermal stability, however, presents a major barrier to the practical applications. Here we report an ultrastable Au nanocatalyst by localizing the Au nanoparticles (NPs) in the interfacial regions between the TiO2 and hydroxyapatite. This unique configuration makes the Au NP surface partially encapsulated due to the strong metal-support interaction and partially exposed and accessible by the reaction molecules. The strong interaction helps stabilizing the Au NPs while the partially exposed Au NP surface provides the active sites for reactions. Such a catalyst not only demonstrated excellent sintering resistance with high activity after calcination at 800 degrees C but also showed excellent durability that outperforms a commercial three-way catalyst in a simulated practical testing, suggesting great potential for practical applications.
引用
收藏
页码:10606 / 10611
页数:6
相关论文
共 43 条
  • [11] Freund H. J., 2011, ANGEW CHEM, V123, P10242
  • [12] CO Oxidation as a Prototypical Reaction for Heterogeneous Processes
    Freund, Hans-Joachim
    Meijer, Gerard
    Scheffler, Matthias
    Schlogl, Robert
    Wolf, Martin
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (43) : 10064 - 10094
  • [13] Why Use Platinum in Catalytic Converters?
    Golunski, S. E.
    [J]. PLATINUM METALS REVIEW, 2007, 51 (03) : 162 - 162
  • [14] Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst
    Green, Isabel Xiaoye
    Tang, Wenjie
    Neurock, Matthew
    Yates, John T., Jr.
    [J]. SCIENCE, 2011, 333 (6043) : 736 - 739
  • [15] Guan H., 2016, ANGEW CHEM, V128, P2870
  • [16] Catalytically Active Rh Sub-Nanoclusters on TiO2 for CO Oxidation at Cryogenic Temperatures
    Guan, Hongling
    Lin, Jian
    Qiao, Botao
    Yang, Xiaofeng
    Li, Lin
    Miao, Shu
    Liu, Jingyue
    Wang, Aigin
    Wang, Xiaodong
    Zhang, Tao
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (08) : 2820 - 2824
  • [17] Synthesis of phosphorus-doped titania with mesoporous structure and excellent photocatalytic activity
    Guo, Siyao
    Han, Song
    Mao Haifeng
    Zeng, Chenghui
    Sun, Yong
    Chi, Bo
    Pu, Jian
    Li, Jian
    [J]. MATERIALS RESEARCH BULLETIN, 2013, 48 (09) : 3032 - 3036
  • [18] NOVEL GOLD CATALYSTS FOR THE OXIDATION OF CARBON-MONOXIDE AT A TEMPERATURE FAR BELOW 0-DEGREES-C
    HARUTA, M
    KOBAYASHI, T
    SANO, H
    YAMADA, N
    [J]. CHEMISTRY LETTERS, 1987, (02) : 405 - 408
  • [19] GOLD CATALYSTS PREPARED BY COPRECIPITATION FOR LOW-TEMPERATURE OXIDATION OF HYDROGEN AND OF CARBON-MONOXIDE
    HARUTA, M
    YAMADA, N
    KOBAYASHI, T
    IIJIMA, S
    [J]. JOURNAL OF CATALYSIS, 1989, 115 (02) : 301 - 309
  • [20] Gold nanoparticles supported on hydroxylapatite as high performance catalysts for low temperature CO oxidation
    Huang, Jun
    Wang, Lu-Cun
    Liu, Yong-Mei
    Cao, Yong
    He, He-Yong
    Fan, Kang-Nian
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 101 (3-4) : 560 - 569