Deep imaging flow cytometry

被引:29
|
作者
Huang, Kangrui [1 ]
Matsumura, Hiroki [1 ]
Zhao, Yaqi [1 ]
Herbig, Maik [1 ]
Yuan, Dan [1 ]
Mineharu, Yohei [2 ,3 ]
Harmon, Jeffrey [1 ]
Findinier, Justin [4 ]
Yamagishi, Mai [5 ]
Ohnuki, Shinsuke [6 ]
Nitta, Nao [7 ]
Grossman, Arthur R. [4 ,8 ]
Ohya, Yoshikazu [6 ,9 ]
Mikami, Hideharu [1 ,10 ]
Isozaki, Akihiro [1 ]
Goda, Keisuke [1 ,11 ,12 ]
机构
[1] Univ Tokyo, Dept Chem, Tokyo 1130033, Japan
[2] Kyoto Univ, Dept Neurosurg, Kyoto 6068507, Japan
[3] Kyoto Univ, Dept Artificial Intelligence Healthcare & Med, Grad Sch Med, Kyoto 6068507, Japan
[4] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA
[5] Univ Tokyo, Dept Biol Sci, Tokyo 1130033, Japan
[6] Univ Tokyo, Grad Sch Frontier Sci, Dept Integrated Biosci, Chiba 2778562, Japan
[7] CYBO, Tokyo 1010022, Japan
[8] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[9] Univ Tokyo, Collaborat Res Inst Innovat Microbiol, Tokyo 1138654, Japan
[10] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[11] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[12] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Hubei, Peoples R China
关键词
MICROSCOPY; IMAGES;
D O I
10.1039/d1lc01043c
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Imaging flow cytometry (IFC) has become a powerful tool for diverse biomedical applications by virtue of its ability to image single cells in a high-throughput manner. However, there remains a challenge posed by the fundamental trade-off between throughput, sensitivity, and spatial resolution. Here we present deep-learning-enhanced imaging flow cytometry (dIFC) that circumvents this trade-off by implementing an image restoration algorithm on a virtual-freezing fluorescence imaging (VIFFI) flow cytometry platform, enabling higher throughput without sacrificing sensitivity and spatial resolution. A key component of dIFC is a high-resolution (HR) image generator that synthesizes "virtual" HR images from the corresponding low-resolution (LR) images acquired with a low-magnification lens (10x/0.4-NA). For IFC, a low-magnification lens is favorable because of reduced image blur of cells flowing at a higher speed, which allows higher throughput. We trained and developed the HR image generator with an architecture containing two generative adversarial networks (GANs). Furthermore, we developed dIFC as a method by combining the trained generator and IFC. We characterized dIFC using Chlamydomonas reinhardtii cell images, fluorescence in situ hybridization (FISH) images of Jurkat cells, and Saccharomyces cerevisiae (budding yeast) cell images, showing high similarities of dIFC images to images obtained with a high-magnification lens (40x/0.95-NA), at a high flow speed of 2 m s(-1). We lastly employed dIFC to show enhancements in the accuracy of FISH-spot counting and neck-width measurement of budding yeast cells. These results pave the way for statistical analysis of cells with high-dimensional spatial information.
引用
收藏
页码:876 / 889
页数:15
相关论文
共 50 条
  • [41] Imaging Flow Cytometry to Study Microbial Autoaggregation
    Suissa, Ronit
    Hadad, Uzi
    Meijler, Michael
    Kolodkin-Gal, Ilana
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (199):
  • [42] Imaging flow cytometry analysis of intracellular pathogens
    Haridas, Viraga
    Ranjbar, Shahin
    Vorobjev, Ivan A.
    Goldfeld, Anne E.
    Barteneva, Natasha S.
    METHODS, 2017, 112 : 91 - 104
  • [43] In vivo optical flow cytometry and cell imaging
    Tuchin, V. V.
    RIVISTA DEL NUOVO CIMENTO, 2014, 37 (07): : 375 - 416
  • [44] Analysis of human chromosomes by imaging flow cytometry
    Stanley, Jason
    Hui, Henry
    Erber, Wendy
    Clynick, Britt
    Fuller, Kathy
    CYTOMETRY PART B-CLINICAL CYTOMETRY, 2021, 100 (05) : 541 - 553
  • [45] Deductive automated pollen classification in environmental samples via exploratory deep learning and imaging flow cytometry
    Barnes, Claire M.
    Power, Ann L.
    Barber, Daniel G.
    Tennant, Richard K.
    Jones, Richard T.
    Lee, G. Rob
    Hatton, Jackie
    Elliott, Angela
    Zaragoza-Castells, Joana
    Haley, Stephen M.
    Summers, Huw D.
    Doan, Minh
    Carpenter, Anne E.
    Rees, Paul
    Love, John
    NEW PHYTOLOGIST, 2023, 240 (03) : 1305 - 1326
  • [46] Real-time fluorescence imaging flow cytometry enabled by motion deblurring and deep learning algorithms
    Wang, Yiming
    Huang, Ziwei
    Wang, Xiaojie
    Yang, Fengrui
    Yao, Xuebiao
    Pan, Tingrui
    Li, Baoqing
    Chu, Jiaru
    LAB ON A CHIP, 2023, 23 (16) : 3615 - 3627
  • [47] Inter-laboratory automation of the in vitro micronucleus assay using imaging flow cytometry and deep learning
    Wills, John W.
    Verma, Jatin R.
    Rees, Benjamin J.
    Harte, Danielle S. G.
    Haxhiraj, Qiellor
    Barnes, Claire M.
    Barnes, Rachel
    Rodrigues, Matthew A.
    Minh Doan
    Filby, Andrew
    Hewitt, Rachel E.
    Thornton, Catherine A.
    Cronin, James G.
    Kenny, Julia D.
    Buckley, Ruby
    Lynch, Anthony M.
    Carpenter, Anne E.
    Summers, Huw D.
    Johnson, George E.
    Rees, Paul
    ARCHIVES OF TOXICOLOGY, 2021, 95 (09) : 3101 - 3115
  • [48] Deep learning-enabled imaging flow cytometry for high-speed Cryptosporidium and Giardia detection
    Luo, Shaobo
    Nguyen, Kim Truc
    Nguyen, Binh T. T.
    Feng, Shilun
    Shi, Yuzhi
    Elsayed, Ahmed
    Zhang, Yi
    Zhou, Xiaohong
    Wen, Bihan
    Chierchia, Giovanni
    Talbot, Hugues
    Bourouina, Tarik
    Jiang, Xudong
    Liu, Ai Qun
    CYTOMETRY PART A, 2021, 99 (11) : 1123 - 1133
  • [49] Phenotypic Analysis of Microalgae Populations Using Label-Free Imaging Flow Cytometry and Deep Learning
    Isil, Cagatay
    de Haan, Kevin
    Gorocs, Zoltan
    Koydemir, Hatice Ceylan
    Peterman, Spencer
    Baum, David
    Song, Fang
    Skandakumar, Thamira
    Gumustekin, Esin
    Ozcan, Aydogan
    ACS PHOTONICS, 2021, 8 (04) : 1232 - 1242
  • [50] Inter-laboratory automation of the in vitro micronucleus assay using imaging flow cytometry and deep learning
    John W. Wills
    Jatin R. Verma
    Benjamin J. Rees
    Danielle S. G. Harte
    Qiellor Haxhiraj
    Claire M. Barnes
    Rachel Barnes
    Matthew A. Rodrigues
    Minh Doan
    Andrew Filby
    Rachel E. Hewitt
    Catherine A. Thornton
    James G. Cronin
    Julia D. Kenny
    Ruby Buckley
    Anthony M. Lynch
    Anne E. Carpenter
    Huw D. Summers
    George E. Johnson
    Paul Rees
    Archives of Toxicology, 2021, 95 : 3101 - 3115