Robustly stable feedback min-max model predictive control

被引:0
|
作者
Kerrigan, EC [1 ]
Maciejowski, JM [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
来源
PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6 | 2003年
关键词
min-max problems; robust control; optimal control; receding horizon control; parametric programming; piecewise linear control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the practical real-time implementability of robustly stable model predictive control (MPC) when constraints are present on the inputs and the states. We assume that the plant model is known, is discrete-time and linear time-invariant, is subject to unknown but bounded state disturbances and that the states of the system are measured. In this paper we introduce a new stage cost and show that the use of this cost allows one to formulate a robustly stable MPC problem that can be solved using a single linear program. Furthermore, this is a multi-parametric linear program, which implies that the receding horizon control (RHC) law is piecewise affine, and can be explicitly pre-computed, so that the linear program does not have to be solved on-line.
引用
收藏
页码:3490 / 3495
页数:6
相关论文
共 50 条
  • [21] Active set solver for min-max robust control with state and input constraints
    Buerger, Johannes
    Cannon, Mark
    Kouvaritakis, Basil
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (15) : 3209 - 3231
  • [22] Finite-horizon min-max control of max-plus-linear systems
    Necoara, Ion
    Kerrigan, Eric C.
    De Schutter, Bart
    van den Boom, Ton J. J.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (06) : 1088 - 1093
  • [23] Min-max predictive control techniques for a linear state-space system with a bounded set of input matrices
    Lee, JH
    Cooley, BL
    AUTOMATICA, 2000, 36 (03) : 463 - 473
  • [24] Dynamic robust output min-max control for discrete uncertain systems
    Sharav-Schapiro, N
    Palmor, ZJ
    Steinberg, A
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 103 (02) : 421 - 439
  • [25] Robust output dynamic min-max control for discrete uncertain systems
    Sharav-Schapiro, N
    Palmor, ZJ
    Steinberg, A
    ROBUST CONTROL DESIGN (ROCODN'97): A PROCEEDINGS VOLUME FROM THE IFAC SYMPOSIUM, 1997, : 291 - 296
  • [26] Online learning for min-max discrete problems
    Bampis, Evripidis
    Christou, Dimitris
    Escoffier, Bruno
    NGuyen, Kim Thang
    THEORETICAL COMPUTER SCIENCE, 2022, 930 : 209 - 217
  • [27] Min-Max MPC based on a network problem
    Alamo, T.
    de la Pena, D. Munoz
    Camacho, E. R.
    SYSTEMS & CONTROL LETTERS, 2008, 57 (02) : 184 - 192
  • [28] Min-max control of constrained uncertain discrete-time linear systems
    Bemporad, A
    Borrelli, F
    Morari, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (09) : 1600 - 1606
  • [29] Novel Min-Max Reformulations of Linear Inverse Problems
    Sheriff, Mohammed Rayyan
    Chatterjee, Debasish
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23 : 1 - 46
  • [30] Min-Max Time Consensus Tracking With Communication Guarantee
    Mulla, Ameer K.
    Chakraborty, Debraj
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (01) : 132 - 144