Robustly stable feedback min-max model predictive control

被引:0
|
作者
Kerrigan, EC [1 ]
Maciejowski, JM [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
来源
PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6 | 2003年
关键词
min-max problems; robust control; optimal control; receding horizon control; parametric programming; piecewise linear control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the practical real-time implementability of robustly stable model predictive control (MPC) when constraints are present on the inputs and the states. We assume that the plant model is known, is discrete-time and linear time-invariant, is subject to unknown but bounded state disturbances and that the states of the system are measured. In this paper we introduce a new stage cost and show that the use of this cost allows one to formulate a robustly stable MPC problem that can be solved using a single linear program. Furthermore, this is a multi-parametric linear program, which implies that the receding horizon control (RHC) law is piecewise affine, and can be explicitly pre-computed, so that the linear program does not have to be solved on-line.
引用
收藏
页码:3490 / 3495
页数:6
相关论文
共 50 条
  • [1] Feedback min-max model predictive control using a single linear program: robust stability and the explicit solution
    Kerrigan, EC
    Maciejowski, JM
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2004, 14 (04) : 395 - 413
  • [2] Feedback min-max model predictive control based on a quadratic cost function
    de la Pena, D. Munoz
    Alamo, T.
    Bemporad, A.
    Camacho, E. F.
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 1575 - +
  • [3] Reducing the computational effort of min-max model predictive control with regional feedback laws
    Koenig, Kai
    Moennigmann, Martin
    IFAC PAPERSONLINE, 2021, 54 (06): : 58 - 63
  • [4] Computation, approximation and stability of explicit feedback min-max nonlinear model predictive control
    Grancharova, Alexandra
    Johansen, Tor A.
    AUTOMATICA, 2009, 45 (05) : 1134 - 1143
  • [5] Feedback min-max model predictive control using robust one-step sets
    Cychowski, Marcin T.
    O'Mahony, Tom
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2010, 41 (07) : 813 - 823
  • [6] Min-max Model Predictive Control of Nonlinear Systems: A Unifying Overview on Stability
    Raimondo, Davide Martino
    Limon, Daniel
    Lazar, Mircea
    Magni, Lalo
    Fernandez Camacho, Eduardo
    EUROPEAN JOURNAL OF CONTROL, 2009, 15 (01) : 5 - 21
  • [7] Towards the practical implementation of min-max nonlinear model predictive control
    Raimondo, D. M.
    Alamo, T.
    Limon, D.
    Camacho, E. F.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 5965 - +
  • [8] A robust least squares based approach to min-max model predictive control
    Jetto, L.
    Orsini, V.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (13) : 4807 - 4825
  • [9] Control of a pilot plant using QP based min-max predictive control
    Gruber, J. K.
    Ramirez, D. R.
    Alamo, T.
    Bordons, C.
    Camacho, E. F.
    CONTROL ENGINEERING PRACTICE, 2009, 17 (11) : 1358 - 1366
  • [10] Constrained min-max predictive control:: a polynomial-time approach
    Alamo, T
    de la Peña, DM
    Limon, D
    Camacho, EF
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 912 - 916