Influence of arterial input function (AIF) on quantitative prostate dynamic contrast-enhanced (DCE) MRI and zonal prostate anatomy

被引:13
|
作者
Ziayee, F. [1 ]
Mueller-Lutz, A. [1 ]
Gross, J. [1 ]
Quentin, M. [1 ]
Ullrich, T. [1 ]
Heusch, P. [1 ]
Arsov, C. [2 ]
Rabenalt, R. [2 ]
Albers, P. [2 ]
Antoch, G. [1 ]
Wittsack, H. J. [1 ]
Schimmoeller, L. [1 ]
机构
[1] Univ Dusseldorf, Med Fac, Dept Diagnost & Intervent Radiol, D-40225 Dusseldorf, Germany
[2] Univ Dusseldorf, Med Fac, Dept Urol, D-40225 Dusseldorf, Germany
关键词
Arterial input function; Quantitative perfusion parameters; Tofts model; Dynamic contrast enhanced imaging; Prostate MRI; PHARMACOKINETIC PARAMETERS; CANCER-DETECTION; PI-RADS; LOCALIZATION; PERFORMANCE; VALIDATION; SEQUENCES; SYSTEM;
D O I
10.1016/j.mri.2018.06.004
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Reproducibility of quantitative perfusion analysis of DCE requires a standardized AIF acquisition. However, there are many different approaches for AIF assessment so that the absolute values of perfusion parameters may vary depending on the used method. This study analyzes the influence of the method of AIF determination on quantitative DCE-MRI. Methods: In this retrospective, single-center, cohort study three different methods of AIF determination in 50 consecutive patients with multiparametric MRI of the prostate were conducted. As a reference, AIF was selected manually by defining a region of interest in an artery manually (AIF(m)). The second method (AIF(a)), based on an automated algorithm and the third, population-derived AlFp where then compared. Primary endpoint were differences in the performance of the perfusion parameters K-trans, ve and k(ep) regarding the AIF acquisition methods, secondary endpoints consisted of the evaluation of differences in the peripheral and transition zone of the prostate (PZ, TZ). Results: In all three methods, K-trans, ve, and k(ep) were significantly higher in PZ than in TZ with K-trans showing least overlapping. There were no significant differences for K-trans determined with AIF(m), and AIF(a) (0.3 +/- 0.2 min(-1) for PZ for both and 0.5 +/- 0.3 min(-1) for TZ in AIF(m) and 0.4 +/- 0.3 min(-1) in AIF(a)), while there were great differences between AIF(a) and AIF(p) and AIF(m) and AIF(p) (0.1 +/- 0.03 min(-1) for TZ and PZ in AIF(p)). Spearman test demonstrated good correlation of values for K-trans and K-ep in all 3 methods (p >= 0.76). AIF(a) showed a success rate of 98% in finding the artery. Conclusion: AIF(a) is a recommendable user-independent automatical method to determine quantitative perfusion parameters allowing an objective measurement and saving interactive time for the radiologist. AIF(p) may be applied as second alternative method.
引用
收藏
页码:28 / 33
页数:6
相关论文
共 50 条
  • [1] Arterial input function for quantitative dynamic contrast-enhanced MRI to diagnose prostate cancer
    Ziayee, Farid
    Mueller-Lutz, Anja
    Gross, Janina
    Ullrich, Tim
    Quentin, Michael
    Arsov, Christian
    Antoch, Gerald
    Wittsack, Hans-Joerg
    Schimmoeller, Lars
    DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2022, 28 (02) : 108 - 114
  • [2] Dynamic Contrast-Enhanced (DCE) MRI
    Li, Xin
    Huang, Wei
    Holmes, James H.
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2024, 32 (01) : 47 - 61
  • [3] Influence of Different Measurement Methods of Arterial Input Function on Quantitative Dynamic Contrast-Enhanced MRI Parameters in Head and Neck Cancer
    Dong, Wanxin
    Volk, Andreas
    Djaroum, Meriem
    Girot, Charly
    Balleyguier, Corinne
    Lebon, Vincent
    Garcia, Gabriel
    Ammari, Samy
    Temam, Stephane
    Gorphe, Philippe
    Wei, Lecong
    Pitre-Champagnat, Stephanie
    Lassau, Nathalie
    Bidault, Francois
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (01) : 122 - 132
  • [4] Operator dependency of arterial input function in dynamic contrast-enhanced MRI
    Kleppesto, Magne
    Bjornerud, Atle
    Groote, Inge Rasmus
    Kim, Minjae
    Vardal, Jonas
    Larsson, Christopher
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2022, 35 (01) : 105 - 112
  • [5] Operator dependency of arterial input function in dynamic contrast-enhanced MRI
    Magne Kleppestø
    Atle Bjørnerud
    Inge Rasmus Groote
    Minjae Kim
    Jonas Vardal
    Christopher Larsson
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2022, 35 : 105 - 112
  • [6] Phase-based Arterial Input Function Measurements in the Femoral Arteries for Quantification of Dynamic Contrast-enhanced (DCE) MRI and Comparison With DCE-CT
    Korporaal, Johannes G.
    van den Berg, Cornelis A. T.
    van Osch, Matthias J. P.
    Groenendaal, Greetje
    van Vulpen, Marco
    van der Heide, Uulke A.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (05) : 1267 - 1274
  • [7] Modified MR dispersion imaging in prostate dynamic contrast-enhanced MRI
    Sung, Kyunghyun
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (04) : 1307 - 1317
  • [8] Overview of Dynamic Contrast-Enhanced MRI in Prostate Cancer Diagnosis and Management
    Verma, Sadhna
    Turkbey, Baris
    Muradyan, Naira
    Rajesh, Arumugam
    Cornud, Francois
    Haider, Masoom A.
    Choyke, Peter L.
    Harisinghani, Mukesh
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2012, 198 (06) : 1277 - 1288
  • [9] Quantitative dynamic contrast-enhanced MRI for mouse models using automatic detection of the arterial input function
    Kim, Jae-Hun
    Im, Geun Ho
    Yang, Jehoon
    Choi, Dongil
    Lee, Won Jae
    Lee, Jung Hee
    NMR IN BIOMEDICINE, 2012, 25 (04) : 674 - 684
  • [10] Effects of arterial input function selection on kinetic parameters in brain dynamic contrast-enhanced MRI
    Keil, Vera C.
    Maedler, Burkhard
    Gieseke, Juergen
    Fimmers, Rolf
    Hattingen, Elke
    Schild, Hans H.
    Hadizadeh, Dariusch R.
    MAGNETIC RESONANCE IMAGING, 2017, 40 : 83 - 90