Spectral properties of self-similar measures with product-form digit sets

被引:5
作者
Liu, Jing-Cheng [1 ]
Peng, Rong-Gui [1 ]
Wu, Hai-Hua [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stast, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
[2] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
关键词
Iterated function system; Self-affine measure; Spectral measure; Translational tile; AFFINE TILES; FUGLEDES CONJECTURE;
D O I
10.1016/j.jmaa.2018.12.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the spectral properties of self-similar measures mu(R,D) generated by the integer R = N-q and the product-form digit set D = {0, 1, . . . ,N - 1}circle plus N-P {0, 1, . . . , N - 1}, where the integers q, p >= 1 and N >= 2. We show that mu(R,D) is a spectral measure if and only if q inverted iota p. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:479 / 489
页数:11
相关论文
共 27 条
  • [11] Spectrality of Self-Similar Tiles
    Fu, Xiaoye
    He, Xinggang
    Lau, Ka-Sing
    [J]. CONSTRUCTIVE APPROXIMATION, 2015, 42 (03) : 519 - 541
  • [12] Fuglede B., 1974, Journal of Functional Analysis, V16, P101, DOI 10.1016/0022-1236(74)90072-X
  • [13] Grochenig K., 1994, J FOURIER ANAL APPL, V1, P131
  • [14] Height reducing property of polynomials and self-affine tiles
    He, Xing-Gang
    Kirat, Ibrahim
    Lau, Ka-Sing
    [J]. GEOMETRIAE DEDICATA, 2011, 152 (01) : 153 - 164
  • [15] Spectral property of the Bernoulli convolutions
    Hu, Tian-You
    Lau, Ka-Sing
    [J]. ADVANCES IN MATHEMATICS, 2008, 219 (02) : 554 - 567
  • [16] FRACTALS AND SELF SIMILARITY
    HUTCHINSON, JE
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) : 713 - 747
  • [17] Dense analytic subspaces in fractal L2-spaces
    Jorgensen, PET
    Pedersen, S
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1): : 185 - 228
  • [18] Tiles with no spectra
    Kolountzakis, Mihail N.
    Matolcsi, Mate
    [J]. FORUM MATHEMATICUM, 2006, 18 (03) : 519 - 528
  • [19] On spectral Cantor measures
    Laba, I
    Wang, Y
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 193 (02) : 409 - 420
  • [20] Self-affine tiles in R(n)
    Lagarias, JC
    Wang, Y
    [J]. ADVANCES IN MATHEMATICS, 1996, 121 (01) : 21 - 49