Spectral properties of self-similar measures with product-form digit sets

被引:5
作者
Liu, Jing-Cheng [1 ]
Peng, Rong-Gui [1 ]
Wu, Hai-Hua [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stast, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
[2] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
关键词
Iterated function system; Self-affine measure; Spectral measure; Translational tile; AFFINE TILES; FUGLEDES CONJECTURE;
D O I
10.1016/j.jmaa.2018.12.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the spectral properties of self-similar measures mu(R,D) generated by the integer R = N-q and the product-form digit set D = {0, 1, . . . ,N - 1}circle plus N-P {0, 1, . . . , N - 1}, where the integers q, p >= 1 and N >= 2. We show that mu(R,D) is a spectral measure if and only if q inverted iota p. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:479 / 489
页数:11
相关论文
共 27 条
  • [1] Spectrality of a class of infinite convolutions
    An, Li-Xiang
    He, Xing-Gang
    Lau, Ka-Sing
    [J]. ADVANCES IN MATHEMATICS, 2015, 283 : 362 - 376
  • [2] A class of spectral Moran measures
    An, Li-Xiang
    He, Xing-Gang
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) : 343 - 354
  • [3] [Anonymous], ARXIV150601503
  • [4] Spectra of Cantor measures
    Dai, Xin-Rong
    [J]. MATHEMATISCHE ANNALEN, 2016, 366 (3-4) : 1621 - 1647
  • [5] On spectral N-Bernoulli measures
    Dai, Xin-Rong
    He, Xing-Gang
    Lau, Ka-Sing
    [J]. ADVANCES IN MATHEMATICS, 2014, 259 : 511 - 531
  • [6] Spectral property of Cantor measures with consecutive digits
    Dai, Xin-Rong
    He, Xing-Gang
    Lai, Chun-Kit
    [J]. ADVANCES IN MATHEMATICS, 2013, 242 : 187 - 208
  • [7] When does a Bernoulli convolution admit a spectrum?
    Dai, Xin-Rong
    [J]. ADVANCES IN MATHEMATICS, 2012, 231 (3-4) : 1681 - 1693
  • [8] On the spectra of Sierpinski-type self-affine measures
    Deng, Qi-Rong
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (12) : 4426 - 4442
  • [9] Analysis of orthogonality and of orbits in affine iterated function systems
    Dutkay, Dorin Ervin
    Jorgensen, Palle E. T.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (04) : 801 - 823
  • [10] On Fuglede's conjecture and the existence of universal spectra
    Farkas, Balint
    Matolcsi, Mate
    Mora, Peter
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (05) : 483 - 494