A preconditioned implementation of pseudospectral methods on arbitrary grids

被引:9
作者
Ghoreishi, F [1 ]
Hosseini, SM [1 ]
机构
[1] Tarbiat Modares Univ, Dept Math, Tehran, Iran
关键词
pseudospectral method; preconditioner; arbitrary grids; eigenvalues spectrum;
D O I
10.1016/S0096-3003(02)00823-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article a preconditioner for pseudospectral methods in terms of expansion coefficients on arbitrary grids is presented. The preconditioner is first,developed for application in ordinary differential equations and then is generalized for partial differential equations. A fully discrete pseudospectral approximation is then used to solve bivariate problems. This preconditioner, in effect, makes the pseudospectral methods insensitive to specific grid points. The numerical results show the efficiency of the method. (C) 2002 Elsevier Inc. All rights reserved.
引用
收藏
页码:15 / 34
页数:20
相关论文
共 14 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   MULTIPOLE EXPANSIONS AND PSEUDOSPECTRAL CARDINAL FUNCTIONS - A NEW GENERALIZATION OF THE FAST FOURIER-TRANSFORM [J].
BOYD, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 103 (01) :184-186
[3]  
Canuto Cl., 1988, Springer Series in Computational Physics
[4]   TSCHEBYSCHEFF PSEUDOSPECTRAL SOLUTION OF 2ND-ORDER ELLIPTIC-EQUATIONS WITH FINITE-ELEMENT PRECONDITIONING [J].
DEVILLE, M ;
MUND, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (03) :517-533
[5]   Accuracy enhancement for higher derivatives using Chebyshev collocation and a mapping technique [J].
Don, WS ;
Solomonoff, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (04) :1040-1055
[6]   A PRECONDITIONING MATRIX FOR THE CHEBYSHEV DIFFERENCING OPERATOR [J].
FUNARO, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) :1024-1031
[7]  
Funaro D., 1992, POLYNOMIAL APPROXIMA
[8]  
Gottlieb D., 1977, NUMERICAL ANAL SPECT, DOI DOI 10.1137/1.9781611970425
[9]   Integration preconditioning of pseudospectral operators. I. Basic linear operators [J].
Hesthaven, JS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (04) :1571-1593
[10]   A MODIFIED CHEBYSHEV PSEUDOSPECTRAL METHOD WITH AN O(N-1) TIME STEP RESTRICTION [J].
KOSLOFF, D ;
TALEZER, H .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 104 (02) :457-469