SYNTHESIS OF NATURALISTIC VEHICLE DRIVING CYCLES USING THE MARKOV CHAIN MONTE CARLO METHOD

被引:9
|
作者
Puchalski, Andrzej [1 ]
Komorska, Iwona [1 ]
Slezak, Marcin [2 ]
Niewczas, Andrzej [2 ]
机构
[1] Kazimierz Pulaski Univ Technol Radom, Dept Mech Engn, Malczewskiego 29, PL-26600 Radom, Poland
[2] Motor Transport Inst, Jagiellonska 80, PL-03301 Warsaw, Poland
关键词
naturalistic vehicle driving cycles; synthesis of driving cycles; Markov models; Monte Carlo simulation; SPEED;
D O I
10.17531/ein.2020.2.14
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Simulation methods commonly used throughout the design and verification process of various types of motor vehicles require development of naturalistic driving cycles. Optimization of parameters, testing and gradual increase in the degree of autonomy of vehicles is not possible based on standard driving cycles. Ensuring representativeness of synthesized time series based on collected databases requires algorithms using techniques based on stochastic and statistical models. A synthesis technique combining the MCMC method and multifractal analysis has been proposed and verified. The method allows simple determination of the speed profile compared to classic frequency analysis.
引用
收藏
页码:316 / 322
页数:7
相关论文
共 50 条
  • [1] Decoding Fingerprints Using the Markov Chain Monte Carlo Method
    Furon, Teddy
    Guyader, Arnaud
    Cerou, Frederic
    2012 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2012, : 187 - 192
  • [2] Markov chain Monte Carlo sampling using a reservoir method
    Wang, Zhonglei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 139 : 64 - 74
  • [3] Front-view vehicle detection by Markov chain Monte Carlo method
    Jia, Yangqing
    Zhang, Changshui
    PATTERN RECOGNITION, 2009, 42 (03) : 313 - 321
  • [4] On the Markov Chain Monte Carlo (MCMC) method
    Rajeeva L. Karandikar
    Sadhana, 2006, 31 : 81 - 104
  • [5] An introduction to the Markov chain Monte Carlo method
    Wang, Wenlong
    AMERICAN JOURNAL OF PHYSICS, 2022, 90 (12) : 921 - 934
  • [6] On the Markov Chain Monte Carlo (MCMC) method
    Karandikar, RL
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2006, 31 (2): : 81 - 104
  • [7] An Iterative Markov Chain Approach for Generating Vehicle Driving Cycles
    Gong, Qiuming
    Midlam-Mohler, Shawn
    Marano, Vincenzo
    Rizzoni, Giorgio
    SAE INTERNATIONAL JOURNAL OF ENGINES, 2011, 4 (01) : 1035 - 1045
  • [8] Deconvolution and credible intervals using Markov chain Monte Carlo method
    Hovorka, R
    MEDICAL DATA ANALYSIS, PROCEEDINGS, 2000, 1933 : 111 - 121
  • [9] Estimation of hyperbolic diffusion using the Markov chain Monte Carlo method
    Tse, YK
    Zhang, XB
    Yu, J
    QUANTITATIVE FINANCE, 2004, 4 (02) : 158 - 169
  • [10] Interpretation of pooling experiments using the Markov chain Monte Carlo method
    Knill, E
    Schliep, A
    Torney, DC
    JOURNAL OF COMPUTATIONAL BIOLOGY, 1996, 3 (03) : 395 - 406