Path tracking control based on Deep reinforcement learning in Autonomous driving

被引:3
|
作者
Jiang, Le [1 ]
Wang, Yafei [1 ]
Wang, Lin [2 ]
Wu, Jingkai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China
来源
2019 3RD CONFERENCE ON VEHICLE CONTROL AND INTELLIGENCE (CVCI) | 2019年
关键词
Reinforcement learning; Autonomous Driving; Lane Keep Assist (LKA); Adaptive Cruise Control (ACC); PID Control; Vehicle Control;
D O I
10.1109/cvci47823.2019.8951665
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lane keep assist (LKA) and Adaptive Cruise Control (ACC) are two fundamental yet critical functions for autonomous driving, and conventional methods using PID controllers may not perform well in certain extreme driving conditions. In this paper, we propose a reinforcement learning based approach to train the agent to learn LKA and ACC and hence adapt to diverse scenarios. Particularly, we employ deep deterministic policy gradient (DDPG) algorithm to train the agent and consider both state space and action space as continuous, and designed two neural network critic-network and actor-network to simulate the strategy function and Q-function. Then, we train the two neural networks by deep learning method. Finally, Simulations are conducted with both reinforcement learning and traditional PID controller, and the results of reinforcement learning is more adaptive to extreme road conditions in comparison with a traditional PID controller.
引用
收藏
页码:414 / 419
页数:6
相关论文
共 50 条
  • [31] Cooperative Autonomous Driving Control among Vehicles of Different Sizes Using Deep Reinforcement Learning
    Takenaka, Akito
    Harada, Tomohiro
    Miura, Yukiya
    Hattori, Kiyohiko
    Matuoka, Johei
    2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,
  • [32] Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA Simulator
    Gutierrez-Moreno, Rodrigo
    Barea, Rafael
    Lopez-Guillen, Elena
    Araluce, Javier
    Bergasa, Luis M.
    SENSORS, 2022, 22 (21)
  • [33] Tuning path tracking controllers for autonomous cars using reinforcement learning
    Carrasco, Ana Vilaca
    Sequeira, Joao Silva
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [34] Tuning path tracking controllers for autonomous cars using reinforcement learning
    Carrasco A.V.
    Sequeira J.S.
    PeerJ Computer Science, 2023, 9
  • [35] HeuRL: A Heuristically Initialized Reinforcement Learning Method for Autonomous Driving Control Task
    Xu, Jiaxuan
    Yuan, Jian
    2018 INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTS (ICCR), 2018, : 57 - 62
  • [36] Interpretable End-to-End Urban Autonomous Driving With Latent Deep Reinforcement Learning
    Chen, Jianyu
    Li, Shengbo Eben
    Tomizuka, Masayoshi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 5068 - 5078
  • [37] Autonomous driving policy learning based on deep reinforcement learning and multi-type sensor data
    Yang S.
    Jiang Y.-D.
    Wu J.
    Liu H.-Z.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2019, 49 (04): : 1026 - 1033
  • [38] A Safe and Efficient Lane Change Decision-Making Strategy of Autonomous Driving Based on Deep Reinforcement Learning
    Lv, Kexuan
    Pei, Xiaofei
    Chen, Ci
    Xu, Jie
    MATHEMATICS, 2022, 10 (09)
  • [39] Reinforcement Learning Based Speed Control with Creep Rate Constraints for Autonomous Driving of Mining Electric Locomotives
    Li, Ying
    Zhu, Zhencai
    Li, Xiaoqiang
    APPLIED SCIENCES-BASEL, 2024, 14 (11):
  • [40] Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network
    Wu, Yuanqing
    Liao, Siqin
    Liu, Xiang
    Li, Zhihang
    Lu, Renquan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (07) : 3680 - 3690