Homogenization of a 1D nonlinear dynamical problem for periodic composites

被引:30
作者
Andrianov, Igor V. [1 ]
Danishevs'kyy, Vladyslav V. [2 ]
Topol, Heiko [1 ]
Weichert, Dieter [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Gen Mech, Templergraben 64, D-52062 Aachen, Germany
[2] Prydniprovska State Acad Civil Engn & Architectur, Dept Mat Sci, UA-49600 Dnepropetrovsk, Ukraine
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2011年 / 91卷 / 06期
关键词
Composite material; asymptotic homogenization; nonlinear wave; 3RD-ORDER ELASTIC-CONSTANTS; WAVE-PROPAGATION; MEDIA;
D O I
10.1002/zamm.201000176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study wave propagation through a composite material built up of a periodically repeated one-dimensional structure of coated inclusions and matrix material by the application of the asymptotic homogenization method. We take into account geometrical nonlinearity, which is described by the Cauchy-Green strain tensor and physical nonlinearity by the Murnaghan elastic potential. We take into account structural nonlinearity by considering the bonding between two materials to be imperfect. As a result we obtain homogenized equations for the low-frequency range. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:523 / 534
页数:12
相关论文
共 38 条
[1]  
Achenbach JD., 1982, Journal of Nondestructive Evaluation, V3, P229
[2]   Improved Continuous Models for Discrete Media [J].
Andrianov, I. V. ;
Awrejcewicz, J. ;
Weichert, D. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
[3]   Higher order asymptotic homogenization and wave propagation in periodic composite materials [J].
Andrianov, Igor V. ;
Bolshakov, Vladimir I. ;
Danishevs'kyy, Vladyslav V. ;
Weichert, Dieter .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2093) :1181-1201
[4]  
[Anonymous], 1978, ASYMPTOTIC ANAL PERI
[5]   Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations [J].
Bertoldi, K. ;
Boyce, M. C. .
PHYSICAL REVIEW B, 2008, 78 (18)
[6]   Homogenization estimates for fiber-reinforced elastomers with periodic microstructures [J].
Brun, M. ;
Lopez-Pamies, O. ;
Castaneda, P. Ponte .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (18-19) :5953-5979
[7]   Measurement of elastic nonlinearity of soft solid with transient elastography [J].
Catheline, S ;
Gennisson, JL ;
Fink, M .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2003, 114 (06) :3087-3091
[8]  
Cattani C, 2007, WAVELET WAVE ANAL AP
[9]   Homogenization Techniques and Micromechanics. A Survey and Perspectives [J].
Charalambakis, Nicolas .
APPLIED MECHANICS REVIEWS, 2010, 63 (03) :1-10
[10]   A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales [J].
Chen, W ;
Fish, J .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2001, 68 (02) :153-161