Nonlinear estimation for linear inverse problems with error in the operator

被引:54
作者
Hoffmann, Marc [1 ,2 ]
Reiss, Markus [3 ]
机构
[1] CNRS, UMR 8050, F-75700 Paris, France
[2] Univ Marne La Vallee, Marne La Vallee, France
[3] Heidelberg Univ, Inst Appl Math, D-69120 Heidelberg, Germany
关键词
statistical inverse problem; Galerkin projection method; wavelet thresholding; minimax rate; degree of ill-posedness; matrix compression;
D O I
10.1214/009053607000000721
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study two nonlinear methods for statistical linear inverse problems when the operator is not known. The two constructions combine Galerkin regularization and wavelet thresholding. Their performances depend on the underlying structure of the operator, quantified by an index of sparsity. We prove their rate-optimality and adaptivity properties over Besov classes.
引用
收藏
页码:310 / 336
页数:27
相关论文
共 17 条
[1]   Wavelet decomposition approaches to statistical inverse problems [J].
Abramovich, F ;
Silverman, BW .
BIOMETRIKA, 1998, 85 (01) :115-129
[2]   Prediction in functional linear regression [J].
Cai, T. Tony ;
Hall, Peter .
ANNALS OF STATISTICS, 2006, 34 (05) :2159-2179
[3]   Adaptive estimation for inverse problems with noisy operators [J].
Cavalier, L ;
Hengartner, NW .
INVERSE PROBLEMS, 2005, 21 (04) :1345-1361
[4]  
Cohen A, 2000, HDBK NUM AN, V7, P417
[5]   Adaptive wavelet Galerkin methods for linear inverse problems [J].
Cohen, A ;
Hoffmann, M ;
Reiss, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (04) :1479-1501
[6]   Compression techniques for boundary integral equations - asymptotically optimal complexity estimates [J].
Dahmen, W ;
Harbrecht, H ;
Schneider, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 43 (06) :2251-2271
[7]  
Davidson KR, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P317, DOI 10.1016/S1874-5849(01)80010-3
[8]   On minimax wavelet estimators [J].
Delyon, B ;
Juditsky, A .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (03) :215-228
[9]   Adapting to unknown smoothness via wavelet shrinkage [J].
Donoho, DL ;
Johnstone, IM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1200-1224
[10]   NONLINEAR SOLUTION OF LINEAR INVERSE PROBLEMS BY WAVELET-VAGUELETTE DECOMPOSITION [J].
DONOHO, DL .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (02) :101-126