Magnetic hysteresis properties and 57Fe Mossbauer spectroscopy of iron and stony-iron meteorites: Implications for mineralogy and thermal history

被引:30
作者
Dos Santos, E. [1 ]
Gattacceca, J. [2 ]
Rochette, P. [2 ]
Scorzelli, R. B. [1 ]
Fillion, G. [3 ]
机构
[1] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil
[2] Aix Marseille Univ, CNRS, CEREGE UM34, Aix En Provence, France
[3] UJF, CNRS, LNCMI, F-38042 Grenoble, France
基金
美国国家科学基金会;
关键词
Meteorites; Magnetism; Tetrataenite; Thermal/shock history; METALLOGRAPHIC COOLING RATES; NI PHASE-DIAGRAM; CHEMICAL CLASSIFICATION; ACQUISITION CURVES; ORDERED FENI; ORDINARY CHONDRITES; SHOCK HISTORY; METAL PHASES; CLOUDY ZONE; GROUP-IIIAB;
D O I
10.1016/j.pepi.2015.01.004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Since the solid matter in our solar system began to assemble 4.57 billion years ago, meteorites have recorded a large range of processes, including metamorphism, melting, irradiation and hypervelocity impacts. These processes as well as solar system magnetic fields can be accessed through the investigation of magnetic properties of meteorites. In this work, we present magnetic hysteresis properties, isothermal remanent magnetization acquisition curves and Fe-57 Mossbauer spectra for nineteen iron and eleven stony-iron meteorites. These data will be the background for a discussion about the thermal and shock history of these meteorites. Although Mossbauer spectroscopy and hysteresis measurements are not able to provide cooling rates like the conventional metallographic method does, we show that the combination of the ordering degree of taenite phase measured by Mossbauer spectroscopy and hysteresis properties are useful for constraining the thermal and shock history of meteorites. In particular, strong shock and the associated thermal event that result in disordering of tetrataenite can be easily identified. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 64
页数:15
相关论文
共 90 条
[1]  
Agosto W. N., 1980, P LUNAR PLANET SCI C, P1027
[2]  
Albertsen J. F., 1980, THESIS U COPENHAGEN
[3]   STRUCTURE OF TENITE IN 2 IRON-METEORITES [J].
ALBERTSEN, JF ;
JENSEN, GB ;
KNUDSEN, JM .
NATURE, 1978, 273 (5662) :453-454
[4]  
ALBERTSEN JF, 1980, METEORITICS, V15, P258
[5]   A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB-Winonaite parent body [J].
Benedix, GK ;
McCoy, TJ ;
Keil, K ;
Love, SG .
METEORITICS & PLANETARY SCIENCE, 2000, 35 (06) :1127-1141
[6]   Demagnetization of terrestrial and extraterrestrial rocks under hydrostatic pressure up to 1.2 GPa [J].
Bezaeva, Natalia S. ;
Gattacceca, Jerome ;
Rochette, Pierre ;
Sadykov, Ravil A. ;
Trukhin, Vladimir I. .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2010, 179 (1-2) :7-20
[7]  
Brand R. A, 1994, NORMOS 90 MOSSBAUER
[8]   Nanopaleomagnetism of meteoritic Fe-Ni studied using X-ray photoemission electron microscopy [J].
Bryson, James F. J. ;
Herrero-Albillos, Julia ;
Kronast, Florian ;
Ghidini, Massimo ;
Redfern, Simon A. T. ;
van der Laan, Gerrit ;
Harrison, Richard J. .
EARTH AND PLANETARY SCIENCE LETTERS, 2014, 396 :125-133
[9]   Nanomagnetic intergrowths in Fe-Ni meteoritic metal: The potential for time-resolved records of planetesimal dynamo fields [J].
Bryson, James F. J. ;
Church, Nathan S. ;
Kasama, Takeshi ;
Harrison, Richard J. .
EARTH AND PLANETARY SCIENCE LETTERS, 2014, 388 :237-248
[10]  
Buchwald V.F., 1975, Handbook of iron meteorites: Their history, distribution, composition, and structure, V2