Periodic and quasi-periodic solutions for the complex Ginzburg-Landau equation

被引:18
作者
Chung, K. W. [1 ]
Yuan, Xiaoping [2 ,3 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
关键词
D O I
10.1088/0951-7715/21/3/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that there are a continuous branch of periodic solutions and a Cantorian branch of quasi-periodic solutions for the complex Ginzburg-Landau equation for some coefficients of the linear driving term and the dissipation term and these solutions are normally hyperbolic.
引用
收藏
页码:435 / 451
页数:17
相关论文
共 16 条
[1]   NON-LINEAR WAVE-NUMBER INTERACTION IN NEAR-CRITICAL 2-DIMENSIONAL FLOWS [J].
DIPRIMA, RC ;
ECKHAUS, W ;
SEGEL, LA .
JOURNAL OF FLUID MECHANICS, 1971, 49 (OCT29) :705-&
[2]   Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation [J].
Kuksin, S ;
Poschel, J .
ANNALS OF MATHEMATICS, 1996, 143 (01) :149-179
[3]  
Levermore CV, 1996, LECT APPL MATH, V31, P141
[4]  
Luce B.P., 1995, PHYSICA D, V83, P1
[5]   Bifurcations of plane wave (CW) solutions in the complex cubic-quintic Ginzburg-Landau equation [J].
Mancas, Stefan C. ;
Choudhury, S. Roy .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (4-5) :266-280
[6]  
Mielke A, 1996, LECT APPL MATH, V31, P191
[7]   FINITE BANDWIDTH, FINITE AMPLITUDE CONVECTION [J].
NEWELL, AC ;
WHITEHEAD, JA .
JOURNAL OF FLUID MECHANICS, 1969, 38 :279-+
[8]  
NEWELL AC, 1971, P INT UN THEOR APPL, P279
[9]  
NEWTON PK, 1986, Q APPL MATH, V44, P49
[10]  
Pacheco G.C., 2004, PHYSICA D, V197, P269