Moving fronts for complex Ginzburg-Landau equation with Raman term

被引:13
作者
Ankiewicz, A [1 ]
Akhmediev, N [1 ]
机构
[1] Australian Natl Univ, Ctr Opt Sci, Canberra, ACT 0200, Australia
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 05期
关键词
D O I
10.1103/PhysRevE.58.6723
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Moving fronts, or optical shock-type solitons, are discussed for systems with gain and loss under the influence of the Raman effect. We present energy and momentum segment balance equations and establish the exact moving front solutions. We also show here that stationary and moving fronts also exist when we allow for various other nonlinear terms in the modified Ginzburg-Landau equation. [S1063-651X(98)09611-1].
引用
收藏
页码:6723 / 6727
页数:5
相关论文
共 15 条
[1]  
Agrawal G, 1989, Nonlinear Fiber Optics
[2]   KINK SOLITONS AND OPTICAL SHOCKS IN DISPERSIVE NONLINEAR MEDIA [J].
AGRAWAL, GP ;
HEADLEY, C .
PHYSICAL REVIEW A, 1992, 46 (03) :1573-1577
[3]  
Akhmediev N., 1997, SOLITONS NONLINEAR P
[4]   Multisoliton solutions of the complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Ankiewicz, A ;
SotoCrespo, JM .
PHYSICAL REVIEW LETTERS, 1997, 79 (21) :4047-4051
[5]   Analysis of bifurcations for parabolic nonlinearity optical couplers [J].
Ankiewicz, A ;
Akhmediev, N .
OPTICS COMMUNICATIONS, 1996, 124 (1-2) :95-102
[6]   SUPPRESSION OF THE SOLITON SELF-FREQUENCY SHIFT BY BANDWIDTH-LIMITED AMPLIFICATION [J].
BLOW, KJ ;
DORAN, NJ ;
WOOD, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1988, 5 (06) :1301-1304
[7]   FAST AND SLOW RAMAN SHOCK-WAVE DOMAINS IN NONLINEAR MEDIA [J].
CHRISTODOULIDES, DN .
OPTICS COMMUNICATIONS, 1991, 86 (05) :431-436
[8]  
DIANOV EM, 1985, JETP LETT+, V41, P294
[9]   EXACT-SOLUTIONS FOR A HIGHER-ORDER NONLINEAR SCHRODINGER-EQUATION [J].
FLORJANCZYK, M ;
GAGNON, L .
PHYSICAL REVIEW A, 1990, 41 (08) :4478-4485
[10]   SOLITON SELF-FREQUENCY SHIFT VERSUS GALILEAN-LIKE SYMMETRY [J].
GAGNON, L ;
BELANGER, PA .
OPTICS LETTERS, 1990, 15 (09) :466-469