PLANAR ISING MAGNETIZATION FIELD I. UNIQUENESS OF THE CRITICAL SCALING LIMIT

被引:39
作者
Camia, Federico [1 ,2 ]
Garban, Christophe [3 ]
Newman, Charles M. [4 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
[2] NYU Abu Dhabi, Abu Dhabi, U Arab Emirates
[3] ENS, CNRS, F-69364 Lyon, France
[4] NYU, Courant Inst Math Sci, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
Planar Ising model; critical Ising model; continuum scaling limit; magnetization field; Euclidean field theory; conformal invariance; FK clusters; INFINITE CONFORMAL SYMMETRY; ERASED RANDOM-WALKS; CRITICAL PERCOLATION; INVARIANCE; CLUSTER; SLE; FLUCTUATIONS; BOUNDS; MODEL;
D O I
10.1214/13-AOP881
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this paper is to prove the following result. Consider the critical Ising model on the resealed grid aZ(2), then the renormalized magnetization field Phi(a) := a(15/8)s Sigma(x is an element of aZ2)sigma(x)delta(x), seen as a random distribution (i.e., generalized function) on the plane, has a unique scaling limit as the mesh size a SE arrow 0. The limiting field is conformally covariant.
引用
收藏
页码:528 / 571
页数:44
相关论文
共 57 条
[1]   SUSCEPTIBILITY AND FLUCTUATIONS IN ISING FERROMAGNET [J].
ABRAHAM, DB .
PHYSICS LETTERS A, 1973, A 43 (02) :163-164
[2]   INTERFACE PROFILE OF ISING FERROMAGNET IN 2 DIMENSIONS [J].
ABRAHAM, DB ;
REED, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 49 (01) :35-46
[3]   PAIR FUNCTION FOR RECTANGULAR ISING FERROMAGNET [J].
ABRAHAM, DB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 60 (02) :181-191
[4]   Holder regularity and dimension bounds for random curves [J].
Aizenman, M ;
Burchard, A .
DUKE MATHEMATICAL JOURNAL, 1999, 99 (03) :419-453
[5]  
Aizenman M., 1996, STATPHYS 19. The 19th IUPAP International Conference on Statistical Physics, P104
[6]  
Aizenman M., 1995, MATH APPL, V99, P1
[7]   INFINITE CONFORMAL SYMMETRY OF CRITICAL FLUCTUATIONS IN 2 DIMENSIONS [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (5-6) :763-774
[8]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[9]   Continuum nonsimple loops and 2D critical percolation [J].
Camia, F ;
Newman, CM .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :157-173
[10]  
Camia F, 2012, MARKOV PROCESS RELAT, V18, P89