Succinoylation of sugarcane bagasse under ultrasound irradiation

被引:56
|
作者
Liu, C. F. [1 ]
Sun, R. C. [1 ,2 ]
Qin, M. H. [3 ]
Zhang, A. P. [1 ,4 ]
Ren, J. L. [1 ]
Ye, J. [1 ]
Luo, W. [5 ]
Cao, Z. N. [5 ]
机构
[1] S China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou, Peoples R China
[2] Beijing Forestry Univ, Coll Mat Sci & Technol, Beijing, Peoples R China
[3] Shandong Inst Light Ind, Shandong Key Lab Pulp & Paper Engn, Jinan, Peoples R China
[4] Chinese Acad Sci, Inst Chem, Key Lab Cellulos & Lignocellulos Chem, Guangzhou, Peoples R China
[5] S China Univ Technol, Ctr Instrument & Anal, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
sugarcane bagasse; succinic anhydride; chemical modification; succinoylation; ultrasound irradiation;
D O I
10.1016/j.biortech.2007.01.062
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The chemical modification of sugarcane bagasse with succinic anhydride using pyridine as solvent after ultrasound irradiation was studied. The optimized parameters included ultrasound irradiating time 0-50 min, reaction time 30-120 min, succinic anhydride concentration by the ratio of dried sugarcane bagasse to succinic anhydride from 1:0.25 to 1:1.50, and reaction temperature 75-115 degrees C are required in the process. The extent of succinoylation was measured by the weight percent gain (WPG), which increased with increments of reaction time, succinic anhydride concentration, and reaction temperature. The ultrasound irradiation has a positive effect on bagasse succinoylation process. On the other hand, the ultrasonic pre-treatment application broke down the cell wall polymers, resulting in, therefore, a negative effect on the WPG. Evidences of succinoylation were also provided by FT-IR and CP MAS C-13 NMR and the results showed that the succinoylation at C-2 and C-3 occurred. The thermal stability of the succinylated bagasse decreased upon chemical modification. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1465 / 1473
页数:9
相关论文
共 50 条
  • [31] Biodegradability of Quaternized, Crosslinked Sugarcane Bagasse
    Joseph A. Laszlo
    Journal of environmental polymer degradation, 1998, 6 : 73 - 78
  • [32] Liquefaction of sugarcane bagasse for enzyme production
    Cunha, F. M.
    Kreke, T.
    Badino, A. C.
    Farinas, C. S.
    Ximenes, E.
    Ladisch, M. R.
    BIORESOURCE TECHNOLOGY, 2014, 172 : 249 - 252
  • [33] Characterization of sugarcane bagasse by autofluorescence microscopy
    Tiago A. Chimenez
    Marcelo H. Gehlen
    Karen Marabezi
    Antonio A. S. Curvelo
    Cellulose, 2014, 21 : 653 - 664
  • [34] Etherification of hemicelluloses from sugarcane bagasse
    Ren, Jui-Li
    Sun, Run-Cang
    Liu, Chan-Fu
    JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 105 (06) : 3301 - 3308
  • [35] Hydrolysis of sugarcane bagasse in subcritical water
    Prado, Juliana M.
    Follegatti-Romero, Luis A.
    Forster-Carneiro, Tania
    Rostagno, Mauricio A.
    Maugeri Filho, Francisco
    Meireles, M. Angela A.
    JOURNAL OF SUPERCRITICAL FLUIDS, 2014, 86 : 15 - 22
  • [36] Biodegradability of quaternized, crosslinked sugarcane bagasse
    Laszlo, JA
    JOURNAL OF ENVIRONMENTAL POLYMER DEGRADATION, 1998, 6 (02): : 73 - 78
  • [37] Biochemical conversion of sugarcane bagasse into bioproducts
    Jain, Arpan
    Wei, Yanzhang
    Tietje, Ashlee
    BIOMASS & BIOENERGY, 2016, 93 : 227 - 242
  • [38] Exergy analysis of sugarcane bagasse gasification
    Pellegrini, Luiz Felipe
    de Oliveira, Silvio, Jr.
    ENERGY, 2007, 32 (04) : 314 - 327
  • [39] Exergy analysis of sugarcane bagasse gasification
    Pellegrini, LF
    de Oliveira, S
    PROCEEDINGS OF ECOS 2005, VOLS 1-3: SHAPING OUR FUTURE ENERGY SYSTEMS, 2005, : 393 - 400
  • [40] Sugarcane bagasse cogeneration in Belize: A review
    Gongora, Aldair
    Villafranco, Dorien
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 96 : 58 - 63