Deep learning-based diagnosis models for onychomycosis in dermoscopy

被引:20
|
作者
Zhu, Xianzhong [1 ,2 ]
Zheng, Bowen [1 ]
Cai, Wenying [1 ]
Zhang, Jing [1 ]
Lu, Sha [1 ]
Li, Xiqing [1 ]
Xi, Liyan [1 ,3 ]
Kong, Yinying [4 ]
机构
[1] Sun Yat Sen Univ, Dept Dermatol & Venereol, Sun Yat Sen Mem Hosp, 107 West Yanjiang Rd, Guangzhou, Peoples R China
[2] Guangzhou Med Univ, Dept Dermatol & Venereol, Affiliated Hosp 2, Guangzhou, Peoples R China
[3] Southern Med Univ, Dermatol Hosp, Guangzhou, Peoples R China
[4] Guangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
artificial intelligence; deep learning; dermoscopy; faster R-CNN; nail disorder; onychomycosis;
D O I
10.1111/myc.13427
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background Onychomycosis is a common disease. Emerging noninvasive, real-time techniques such as dermoscopy and deep convolutional neural networks have been proposed for the diagnosis of onychomycosis. However, deep learning application in dermoscopic images has not been reported. Objectives To explore the establishment of deep learning-based diagnostic models for onychomycosis in dermoscopy to improve the diagnostic efficiency and accuracy. Methods We evaluated the dermoscopic patterns of onychomycosis diagnosed at Sun Yat-sen Memorial Hospital, Guangzhou, China, from May 2019 to February 2021 and included nail psoriasis and traumatic onychodystrophy as control groups. Based on the dermoscopic images and the characteristic dermoscopic patterns of onychomycosis, we gain the faster region-based convolutional neural networks to distinguish between nail disorder and normal nail, onychomycosis and non-mycological nail disorder (nail psoriasis and traumatic onychodystrophy). The diagnostic performance is compared between deep learning-based diagnosis models and dermatologists. Results All of 1,155 dermoscopic images were collected, including onychomycosis (603 images), nail psoriasis (221 images), traumatic onychodystrophy (104 images) and normal cases (227 images). Statistical analyses revealed subungual keratosis, distal irregular termination, longitudinal striae, jagged edge, and marble-like turbid area, and cone-shaped keratosis were of high specificity (>82%) for onychomycosis diagnosis. The deep learning-based diagnosis models (ensemble model) showed test accuracy /specificity/ sensitivity /Youden index of (95.7%/98.8%/82.1%/0.809) and (87.5%/93.0%/78.5%/0.715) for nail disorder and onychomycosis. The diagnostic performance for onychomycosis using ensemble model was superior to 54 dermatologists. Conclusions Our study demonstrated that onychomycosis had distinctive dermoscopic patterns, compared with nail psoriasis and traumatic onychodystrophy. The deep learning-based diagnosis models showed a diagnostic accuracy of onychomycosis, superior to dermatologists.
引用
收藏
页码:466 / 472
页数:7
相关论文
共 50 条
  • [31] Deep Learning-Based Multiomic Model for Lung Cancer Diagnosis
    Zhao, M.
    She, Y.
    JOURNAL OF THORACIC ONCOLOGY, 2024, 19 (10) : S60 - S61
  • [32] Deep learning-based gastric cancer diagnosis and clinical management
    Xie, Keping
    Peng, Jidong
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2023, 16 (03)
  • [33] Deep learning-based diagnosis of stifle joint diseases in dogs
    Shim, Hyesoo
    Lee, Jongmo
    Choi, Seunghoon
    Kim, Jayon
    Jeong, Jeongyun
    Cho, Changhyun
    Kim, Hyungseok
    Kim, Jee-in
    Kim, Jaehwan
    Eom, Kidong
    VETERINARY RADIOLOGY & ULTRASOUND, 2023, 64 (01) : 113 - 122
  • [34] Robustness Analysis for Deep Learning-Based Image Reconstruction Models
    Ayna, Cemre Omer
    Gurbuz, Ali Cafer
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 1428 - 1432
  • [35] Quantitative Analysis of Deep Learning-Based Object Detection Models
    Elgazzar, Khalid
    Mostafi, Sifatul
    Dennis, Reed
    Osman, Youssef
    IEEE ACCESS, 2024, 12 : 70025 - 70044
  • [36] Development of a Deep Learning-Based Deterioration Diagnosis System in Switchgear
    Kang, Tae-Hyung
    Bang, Jun-Ho
    Ryu, In-Ho
    Transactions of the Korean Institute of Electrical Engineers, 2024, 73 (09) : 1588 - 1594
  • [37] Deep Learning-Based YOLO Models for the Detection of People With Disabilities
    Alruwaili, Madallah
    Atta, Muhammad Nouman
    Siddiqi, Muhammad Hameed
    Khan, Abdullah
    Khan, Asfandyar
    Alhwaiti, Yousef
    Alanazi, Saad
    IEEE ACCESS, 2024, 12 : 2543 - 2566
  • [38] A data interpretation approach for deep learning-based prediction models
    Dadsetan, Saba
    Wu, Shandong
    MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [39] Improving Automatic Melanoma Diagnosis Using Deep Learning-Based Segmentation of Irregular Networks
    Nambisan, Anand K.
    Maurya, Akanksha
    Lama, Norsang
    Phan, Thanh
    Patel, Gehana
    Miller, Keith
    Lama, Binita
    Hagerty, Jason
    Stanley, Ronald
    Stoecker, William V.
    CANCERS, 2023, 15 (04)
  • [40] A deep learning-based technique for the diagnosis of epidural spinal cord compression on thoracolumbar CT
    James Thomas Patrick Decourcy Hallinan
    Lei Zhu
    Hui Wen Natalie Tan
    Si Jian Hui
    Xinyi Lim
    Bryan Wei Loong Ong
    Han Yang Ong
    Sterling Ellis Eide
    Amanda J. L. Cheng
    Shuliang Ge
    Tricia Kuah
    Shi Wei Desmond Lim
    Xi Zhen Low
    Ee Chin Teo
    Qai Ven Yap
    Yiong Huak Chan
    Naresh Kumar
    Balamurugan A. Vellayappan
    Beng Chin Ooi
    Swee Tian Quek
    Andrew Makmur
    Jiong Hao Tan
    European Spine Journal, 2023, 32 : 3815 - 3824