Superconductivity found in meteorites

被引:5
|
作者
Wampler, James [1 ,2 ]
Thiemens, Mark [3 ]
Cheng, Shaobo [4 ]
Zhu, Yimei [4 ]
Schuller, Ivan K. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Adv Nanosci, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[4] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA
关键词
superconductivity; meteorites; extraterrestrial; INCLUSION; MYSTERITE; UREILITES; ORIGIN;
D O I
10.1073/pnas.1918056117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Meteorites can contain a wide range of material phases due to the extreme environments found in space and are ideal candidates to search for natural superconductivity. However, meteorites are chemically inhomogeneous, and superconducting phases in them could potentially be minute, rendering detection of these phases difficult. To alleviate this difficulty, we have studied meteorite samples with the ultrasensitive magnetic field modulated microwave spectroscopy (MFMMS) technique [J. G. Ramirez, A. C. Basaran, J. de la Venta, J. Pereiro, I. K. Schuller, Rep. Prog. Phys. 77, 093902 (2014)]. Here, we report the identification of superconducting phases in two meteorites, Mundrabilla, a group IAB iron meteorite [R. Wilson, A. Cooney, Nature 213, 274-275 (1967)] and GRA 95205, a ureilite [J. N. Grossman, Meteorit. Planet. Sci. 33, A221-A239 (1998)]. MFMMS measurements detected superconducting transitions in samples from each, above 5 K. By sub-dividing and remeasuring individual samples, grains containing the largest superconducting fraction were isolated. The superconducting grains were then characterized with a series of complementary techniques, including vibrating-sample magnetometry (VSM), energy-dispersive X-ray spectroscopy (EDX), and numerical methods. These measurements and analysis identified the likely phases as alloys of lead, indium, and tin.
引用
收藏
页码:7645 / 7649
页数:5
相关论文
共 50 条
  • [21] Bulk chemical compositions of Antarctic meteorites in the NIPR collection
    Kimura, M.
    Imae, N.
    Yamaguchi, A.
    Haramura, H.
    Kojima, H.
    POLAR SCIENCE, 2018, 15 : 24 - 28
  • [22] The Prevailing Catalytic Role of Meteorites in Formamide Prebiotic Processes
    Saladino, Raffaele
    Botta, Lorenzo
    Di Mauro, Ernesto
    LIFE-BASEL, 2018, 8 (01):
  • [23] Meteorites as a scientific heritage
    Franza, Annarita
    Pratesi, Giovanni
    CONSERVAR PATRIMONIO, 2021, (36): : 106 - 121
  • [24] Spectroscopic investigations of meteorites
    Pentikainen, Hanna
    Penttila, Antti
    Muinonen, Karri
    Peltoniemi, Jouni
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2014, 146 : 391 - 401
  • [25] Mineralogical Evolution of Meteorites
    McCoy, Timothy J.
    ELEMENTS, 2010, 6 (01) : 19 - 23
  • [26] Complex organics in meteorites
    Shimoyama, A
    LIFE SCIENCES: COMPLEX ORGANICS IN SPACE, 1997, 19 (07): : 1045 - 1052
  • [27] Microstructures of iron meteorites
    Strobl, S.
    Haubner, R.
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2024, 61 (9-10): : 679 - 691
  • [28] On the dynamics of volatile meteorites
    Coulson, S. G.
    Wallis, M. K.
    Wickramasinghe, N. C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 445 (04) : 3669 - 3673
  • [29] Mass distributions of meteorites
    Betzler, Alberto S.
    Borges, Ernesto P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (03) : 4058 - 4064
  • [30] Source regions of carbonaceous meteorites and near-Earth objects
    Broz, M.
    Vernazza, P.
    Marsset, M.
    Binzel, R. P.
    Demeo, F.
    Birlan, M.
    Colas, F.
    Anghel, S.
    Bouley, S.
    Blanpain, C.
    Gattacceca, J.
    Jeanne, S.
    Jorda, L.
    Lecubin, J.
    Malgoyre, A.
    Steinhausser, A.
    Vaubaillon, J.
    Zanda, B.
    ASTRONOMY & ASTROPHYSICS, 2024, 689