Molecular Engineering of Thienyl Functionalized Ullazines as Hole-Transporting Materials for Perovskite Solar Cells

被引:6
作者
Xia, Jianxing [1 ]
Cavazzini, Marco [2 ]
Igci, Cansu [1 ]
Momblona, Cristina [1 ]
Orlandi, Simonetta [2 ]
Ding, Bin [1 ]
Zhang, Yi [1 ]
Kanda, Hiroyuki [1 ]
Klipfel, Nadja [1 ]
Khan, Sher Bahadar [3 ]
Asiri, Abdullah Mohamed [3 ]
Dyson, Paul Joseph [1 ]
Pozzi, Gianluca [2 ]
Nazeeruddin, Mohammad Khaja [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Chem Sci & Engn, CH-1951 Sion, Switzerland
[2] CNR, Inst Chem Sci & Technol Giulio Natta CNR SCITEC, Via Camillo Golgi 19, I-20133 Milan, Italy
[3] King Abdulaziz Univ, Ctr Excellence Adv Mat Res CEAMR, POB 80203, Jeddah 21589, Saudi Arabia
关键词
functionalized ullazines; hole-transporting materials; molecular engineering; perovskite solar cells; thienyl substituents; HETEROARENES;
D O I
10.1002/solr.202100926
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Organic hole-transporting materials (HTMs) based on the Ullazine core yield so far only moderate power conversion efficiencies of up to 13.08% in perovskite solar cells (PSCs). Aiming to fabricate efficient and stable PSCs, novel Ullazine derivatives bearing thiophene units were designed and synthesized, allowing modulation of the electronic states of the HTMs and further providing defect passivation ofthe perovskite surface. Experimental and theoretical analysis show that thiophene units with -N(p-MeOC6H4)(2) groups improve the conductivity of Ullazine HTMs, boosting the efficiency of PSCs to 20.21%. This value is the highest reported to date for Ullazine-based HTMs, and is close to the performance of Spiro-OMeTAD. In addition, unencapsulated PSCs based on the champion Ullazine exhibit superior stability with respect to Spiro-OMeTAD, retaining nearly 90% of the initial efficiency following 1000 h aging, which is ascribed to a combination of higher water repellency and passivation of defects on the perovskite surface. This work demonstrates the high potential of HTMs based on Ullazine core as substitutes to Spiro-OMeTAD.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Diindolotriazatruxene-Based Hole-Transporting Materials for High Efficiency Planar Perovskite Solar Cells
    Li, Xiang-Chun
    Tu, Yong-Guang
    Meng, Cheng
    Song, Wan
    Cheng, Tao
    Gong, Yan-Ting
    Min, Jie
    Zhu, Rui
    Lai, Wen-Yong
    Huang, Wei
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (49) : 45717 - 45725
  • [42] Diphenyl-2-pyridylamine-Substituted Porphyrins as Hole-Transporting Materials for Perovskite Solar Cells
    Lee, Un-Hak
    Azmi, Randi
    Sinaga, Septy
    Hwang, Sunbin
    Eom, Seung Hun
    Kim, Tae-Wook
    Yoon, Sung Cheol
    Jang, Sung-Yeon
    Jung, In Hwan
    CHEMSUSCHEM, 2017, 10 (19) : 3780 - 3787
  • [43] Self-Assembled Monolayer-Based Hole-Transporting Materials for Perovskite Solar Cells
    Yeo, Doyeong
    Shin, Juyeon
    Kim, Dabit
    Jaung, Jae Yun
    Jung, In Hwan
    NANOMATERIALS, 2024, 14 (02)
  • [44] Perovskite Solar Cells Employing Molecularly Engineered Zn(II) Phthalocyanines as Hole-transporting Materials
    Cho, Kyung Taek
    Rakstys, Kasparas
    Cavazzini, Marco
    Orlandi, Simonetta
    Pozzi, Gianluca
    Nazeeruddin, Mohammad Khaja
    NANO ENERGY, 2016, 30 : 853 - 857
  • [45] Enamine-Based Cross-Linkable Hole-Transporting Materials for Perovskite Solar Cells
    Vaitukaityte, Deimante
    Al-Ashouri, Amran
    Daskeviciene, Maryte
    Kamarauskas, Egidijus
    Nekrasovas, Jonas
    Jankauskas, Vygintas
    Magomedov, Artiom
    Albrecht, Steve
    Getautis, Vytautas
    SOLAR RRL, 2021, 5 (01)
  • [46] Polycyclic Arenes Dihydrodinaphthopentacene-based Hole-Transporting Materials for Perovskite Solar Cells Application
    Chandrasekaran, Dharuman
    Chiu, Yu-Lin
    Yu, Chun-Kai
    Yen, Yung-Sheng
    Chang, Yuan-Jay
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (22) : 3719 - 3728
  • [47] Facile synthesis of triphenylamine-based hole-transporting materials for planar perovskite solar cells
    Duan, Liangsheng
    Chen, Yu
    Zong, Xueping
    Liu, Ran
    Sun, Zhe
    Liang, Mao
    Wu, Quanping
    Xue, Song
    JOURNAL OF POWER SOURCES, 2019, 435
  • [48] 3,4-Phenylenedioxythiophene (PheDOT) Based Hole-Transporting Materials for Perovskite Solar Cells
    Chen, Jian
    Chen, Bai-Xue
    Zhang, Fang-Shuai
    Yu, Hui-Juan
    Ma, Shuang
    Kuang, Dai-Bin
    Shao, Guang
    Su, Cheng-Yong
    CHEMISTRY-AN ASIAN JOURNAL, 2016, 11 (07) : 1043 - 1049
  • [49] Tetrathienopyrrole-based hole-transporting materials for highly efficient and robust perovskite solar cells
    Wang, Zhihui
    Yan, Suhao
    Yang, Zongyuan
    Zou, Yujie
    Chen, Jin
    Xu, Chunchen
    Mao, Ping
    Ding, Shijie
    Chen, Jing
    Zong, Xueping
    Qin, Tianshi
    Liang, Mao
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [50] Efficient Hole-Transporting Materials with Triazole Core for High-Efficiency Perovskite Solar Cells
    Choi, Hyeju
    Jo, Hyeonjun
    Paek, Sanghyun
    Koh, Kyungkuk
    Ko, Haye Min
    Lee, Jae Kwan
    Ko, Jaejung
    CHEMISTRY-AN ASIAN JOURNAL, 2016, 11 (04) : 548 - 554