Future of machine learning in paediatrics

被引:14
作者
Clarke, Sarah L. N. [1 ,2 ,3 ]
Parmesar, Kevon [2 ]
Saleem, Moin A. [4 ,5 ]
Ramanan, Athimalaipet V. [3 ,6 ]
机构
[1] Univ Bristol, MRC Integrat Epidemiol Unit, Bristol, Avon, England
[2] Univ Bristol, Sch Populat Hlth Sci, Bristol, Avon, England
[3] Bristol Royal Hosp Children, Dept Paediat Rheumatol, Bristol BS2 8BJ, Avon, England
[4] Univ Bristol, Bristol Renal, Bristol, Avon, England
[5] Bristol Royal Hosp Children, Childrens Renal Unit, Bristol, Avon, England
[6] Univ Bristol, Sch Translat Hlth Sci, Bristol, Avon, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
healthcare economics and organisations; information technology;
D O I
10.1136/archdischild-2020-321023
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Machine learning (ML) is a branch of artificial intelligence (AI) that enables computers to learn without being explicitly programmed, through a combination of statistics and computer science. It encompasses a variety of techniques used to analyse and interpret extremely large amounts of data, which can then be applied to create predictive models. Such applications of this technology are now ubiquitous in our day-to-day lives: predictive text, spam filtering, and recommendation systems in social media, streaming video and e-commerce to name a few examples. It is only more recently that ML has started to be implemented against the vast amount of data generated in healthcare. The emerging role of AI in refining healthcare delivery was recently highlighted in the 'National Health Service Long Term Plan 2019'. In paediatrics, workforce challenges, rising healthcare attendance and increased patient complexity and comorbidity mean that demands on paediatric services are also growing. As healthcare moves into this digital age, this review considers the potential impact ML can have across all aspects of paediatric care from improving workforce efficiency and aiding clinical decision-making to precision medicine and drug development.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 54 条
[1]  
[Anonymous], 2020, New York Times
[2]   Automated analysis of free speech predicts psychosis onset in high-risk youths [J].
Bedi G. ;
Carrillo F. ;
Cecchi G.A. ;
Slezak D.F. ;
Sigman M. ;
Mota N.B. ;
Ribeiro S. ;
Javitt D.C. ;
Copelli M. ;
Corcoran C.M. .
npj Schizophrenia, 1 (1)
[3]   Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management [J].
Bierzynska, Agnieszka ;
McCarthy, Hugh J. ;
Soderquest, Katrina ;
Sen, Ethan S. ;
Colby, Elizabeth ;
Ding, Wen Y. ;
Nabhan, Marwa M. ;
Kerecuk, Larissa ;
Hegde, Shivram ;
Hughes, David ;
Marks, Stephen ;
Feather, Sally ;
Jones, Caroline ;
Webb, Nicholas J. A. ;
Ognjanovic, Milos ;
Christian, Martin ;
Gilbert, Rodney D. ;
Sinha, Manish D. ;
Lord, Graham M. ;
Simpson, Michael ;
Koziell, Ania B. ;
Welsh, Gavin I. ;
Saleem, Moin A. .
KIDNEY INTERNATIONAL, 2017, 91 (04) :937-947
[4]   Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research [J].
Bravo, Alex ;
Pinero, Janet ;
Queralt-Rosinach, Nuria ;
Rautschka, Michael ;
Furlong, Laura I. .
BMC BIOINFORMATICS, 2015, 16
[5]   Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks [J].
Brown, James M. ;
Campbell, J. Peter ;
Beers, Andrew ;
Chang, Ken ;
Ostmo, Susan ;
Chan, R. V. Paul ;
Dy, Jennifer ;
Erdogmus, Deniz ;
Ioannidis, Stratis ;
Kalpathy-Cramer, Jayashree ;
Chiang, Michael F. .
JAMA OPHTHALMOLOGY, 2018, 136 (07) :803-810
[6]   Diagnosis of common pulmonary diseases in children by X-ray images and deep learning [J].
Chen, Kai-Chi ;
Yu, Hong-Ren ;
Chen, Wei-Shiang ;
Lin, Wei-Che ;
Lee, Yi-Chen ;
Chen, Hung-Hsun ;
Jiang, Jyun-Hong ;
Su, Ting-Yi ;
Tsai, Chang-Ku ;
Tsai, Ti-An ;
Tsai, Chih-Min ;
Lu, Henry Horng-Shing .
SCIENTIFIC REPORTS, 2020, 10 (01)
[7]   Immunological Profiling of Paediatric Inflammatory Bowel Disease Using Unsupervised Machine Learning [J].
Coelho, Tracy ;
Mossotto, Enrico ;
Gao, Yifang ;
Haggarty, Rachel ;
Ashton, James J. ;
Batra, Akshay ;
Stafford, Imogen S. ;
Beattie, Robert M. ;
Williams, Anthony P. ;
Ennis, Sarah .
JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, 2020, 70 (06) :833-840
[8]   A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data [J].
Costa, Pedro R. ;
Acencio, Marcio L. ;
Lemke, Ney .
BMC GENOMICS, 2010, 11
[9]   Predicting the outcomes of preterm neonates beyond the neonatal intensive care unit: What are we missing? [J].
Crilly, Colin J. ;
Haneuse, Sebastien ;
Litt, Jonathan S. .
PEDIATRIC RESEARCH, 2021, 89 (03) :426-445
[10]   Enhanced early prediction of clinically relevant neonatal hyperbilirubinemia with machine learning [J].
Daunhawer, Imant ;
Kasser, Severin ;
Koch, Gilbert ;
Sieber, Lea ;
Cakal, Hatice ;
Tuetsch, Janina ;
Pfister, Marc ;
Wellmann, Sven ;
Vogt, Julia E. .
PEDIATRIC RESEARCH, 2019, 86 (01) :122-127