The effect of spatiotemporal antibiotic inhomogeneities on the evolution of resistance

被引:4
作者
Steel, Harrison [1 ]
Papachristodoulou, Antonis [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
基金
英国工程与自然科学研究理事会;
关键词
Antibiotic resistance; Evolution; Spatio-temporal drug gradients; Evolutionary models; STABILIZING SELECTION; MICROBIAL EVOLUTION; IN-VIVO; DYNAMICS; MODEL; ADAPTATION; PATHS; POPULATION; TOLERANCE; PERSISTENCE;
D O I
10.1016/j.jtbi.2019.110077
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Combating the evolution of widespread antibiotic resistance is one of the most pressing challenges facing modern medicine. Recent research has demonstrated that the evolution of pathogens with high levels of resistance can be accelerated by spatial and temporal inhomogeneities in antibiotic concentration, which frequently arise in patients and the environment. Strategies to predict and counteract the effects of such inhomogeneities will be critical in the fight against resistance. In this paper we develop a mechanistic framework for modelling the adaptive evolution of resistance in the presence of spatiotemporal antibiotic concentrations, which treats the adaptive process as an interaction between two mutually orthogonal forces; the first returns cells to their wild-type state in the absence of antibiotic selection, and the second selects for increased coping ability in the presence of an antibiotic. We apply our model to investigate laboratory adaptation experiments, and then extend it to consider the case in which multiple strategies for resistance undergo competitive evolution. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 85 条
[61]   The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts [J].
MacLean, R. Craig ;
Hall, Alex R. ;
Perron, Gabriel G. ;
Buckling, Angus .
NATURE REVIEWS GENETICS, 2010, 11 (06) :405-414
[62]   The distribution of fitness effects of new beneficial mutations in Pseudomonas fluorescens [J].
McDonald, Michael J. ;
Cooper, Tim F. ;
Beaumont, Hubertus J. E. ;
Rainey, Paul B. .
BIOLOGY LETTERS, 2011, 7 (01) :98-100
[63]   Microbial evolution in vivo and in silico: methods and applications [J].
Mozhayskiy, Vadim ;
Tagkopoulos, Ilias .
INTEGRATIVE BIOLOGY, 2013, 5 (02) :262-277
[64]  
Ogbunugafor C.B., 2016, NAT ECOL EVOL, V1, DOI [10.1038/541559-016-0007, DOI 10.1038/541559-016-0007]
[65]   Contribution of mathematical modeling to the fight against bacterial antibiotic resistance [J].
Opatowski, Lulla ;
Guillemot, Didier ;
Boelle, Pierre-Yves ;
Temime, Laura .
CURRENT OPINION IN INFECTIOUS DISEASES, 2011, 24 (03) :279-287
[66]   Strength of Selection Pressure Is an Important Parameter Contributing to the Complexity of Antibiotic Resistance Evolution [J].
Oz, Tugce ;
Guvenek, Aysegul ;
Yildiz, Sadik ;
Karaboga, Enes ;
Tamer, Yusuf Talha ;
Mumcuyan, Nirva ;
Ozan, Vedat Burak ;
Senturk, Gizem Hazal ;
Cokol, Murat ;
Yeh, Pamela ;
Toprak, Erdal .
MOLECULAR BIOLOGY AND EVOLUTION, 2014, 31 (09) :2387-2401
[67]   Collateral sensitivity of antibiotic-resistant microbes [J].
Pal, Csaba ;
Papp, Balazs ;
Lazar, Viktoria .
TRENDS IN MICROBIOLOGY, 2015, 23 (07) :401-407
[68]  
Palmer AC., 2018, MOL BIOL EVOL, DOI [10.1093/molbev/msy163/5085501, DOI 10.1093/MOLBEV/MSY163/5085501]
[69]   Delayed commitment to evolutionary fate in antibiotic resistance fitness landscapes [J].
Palmer, Adam C. ;
Toprak, Erdal ;
Baym, Michael ;
Kim, Seungsoo ;
Veres, Adrian ;
Bershtein, Shimon ;
Kishony, Roy .
NATURE COMMUNICATIONS, 2015, 6
[70]   Model Adequacy and the Macroevolution of Angiosperm Functional Traits [J].
Pennell, Matthew W. ;
FitzJohn, Richard G. ;
Cornwell, William K. ;
Harmon, Luke J. .
AMERICAN NATURALIST, 2015, 186 (02) :E33-E50