Phase retrieval of an electron vortex beam using diffraction holography

被引:4
作者
Venturi, Federico [1 ,2 ]
Campanini, Marco [3 ,9 ]
Gazzadi, Gian Carlo [2 ]
Balboni, Roberto [4 ]
Frabboni, Stefano [1 ,2 ]
Boyd, Robert W. [5 ,6 ]
Dunin-Borkowski, Rafal E. [7 ]
Karimi, Ebrahim [5 ,8 ]
Grillo, Vincenzo [2 ,3 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento FIM, Via G Campi 213-A, I-41125 Modena, Italy
[2] CNR, Ist Nanosci, Ctr S3, Via G Campi 213-A, I-41125 Modena, Italy
[3] CNR, IMEM, Parco Area Sci 37-A, I-43124 Parma, Italy
[4] CNR, IMM Bologna, Via P Gobetti 101, I-40129 Bologna, Italy
[5] Univ Ottawa, Dept Phys, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[6] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[7] Forschungszentrum Julich, Electrons & Peter Grunberg Inst, Ernst Ruska Ctr Microscopy & Spect, D-52425 Julich, Germany
[8] Inst Adv Studies Basic Sci, Dept Phys, Zanjan 4513766731, Iran
[9] EMPA, Uberlandstr 129, CH-8600 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
ORBITAL ANGULAR-MOMENTUM; MICROSCOPY; RESOLUTION; INTERFEROMETRY; INTERFERENCE; GENERATION;
D O I
10.1063/1.4998595
中图分类号
O59 [应用物理学];
学科分类号
摘要
In both light optics and electron optics, the amplitude of a wave scattered by an object is an observable that is usually recorded in the form of an intensity distribution in a real space image or a diffraction image. In contrast, retrieval of the phase of a scattered wave is a well-known challenge, which is usually approached by interferometric or numerical methods. In electron microscopy, as a result of constraints in the lens setup, it is particularly difficult to retrieve the phase of a diffraction image. Here, we use a "defocused beam" generated by a nanofabricated hologram to form a reference wave that can be interfered with a diffracted beam. This setup provides an extended interference region with the sample wavefunction in the Fraunhofer plane. As a case study, we retrieve the phase of an electron vortex beam. Beyond this specific example, the approach can be used to retrieve the wavefronts of diffracted beams from a wide range of samples. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 40 条
[21]   Towards full-resolution inline electron holography [J].
Koch, Christoph T. .
MICRON, 2014, 63 :69-75
[22]   Off-axis and inline electron holography: A quantitative comparison [J].
Koch, Christoph T. ;
Lubk, Axel .
ULTRAMICROSCOPY, 2010, 110 (05) :460-471
[23]   Electron interference: mystery and reality [J].
Lichte, H .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 360 (1794) :897-920
[24]   Electron holography - basics and applications [J].
Lichte, Hannes ;
Lehmann, Michael .
REPORTS ON PROGRESS IN PHYSICS, 2008, 71 (01)
[25]   Transport of Intensity Phase Retrieval of Arbitrary Wave Fields Including Vortices [J].
Lubk, Axel ;
Guzzinati, Giulio ;
Boerrnert, Felix ;
Verbeeck, Jo .
PHYSICAL REVIEW LETTERS, 2013, 111 (17)
[26]   A unified evaluation of iterative projection algorithms for phase retrieval [J].
Marchesini, S. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (01)
[27]   Electron Vortex Beams with High Quanta of Orbital Angular Momentum [J].
McMorran, Benjamin J. ;
Agrawal, Amit ;
Anderson, Ian M. ;
Herzing, Andrew A. ;
Lezec, Henri J. ;
McClelland, Jabez J. ;
Unguris, John .
SCIENCE, 2011, 331 (6014) :192-195
[28]   Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens [J].
Miao, JW ;
Charalambous, P ;
Kirz, J ;
Sayre, D .
NATURE, 1999, 400 (6742) :342-344
[29]   Electron tomography and holography in materials science [J].
Midgley, Paul A. ;
Dunin-Borkowski, Rafal E. .
NATURE MATERIALS, 2009, 8 (04) :271-280
[30]   ELECTRON INTERFEROMETRY AND INTERFERENCE ELECTRON-MICROSCOPY [J].
MISSIROLI, GF ;
POZZI, G ;
VALDRE, U .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1981, 14 (06) :649-671