Influence of detection noise on the maximum likelihood estimation of atmospheric turbulence fading parameters

被引:1
|
作者
Chen, Dan [1 ]
Gao, Yue [1 ]
Wang, Huiqin [2 ]
Liu, Yuan [1 ]
Cao, Yeqin [1 ]
机构
[1] Xian Univ Technol, Sch Automat & Informat Engn, Xian 710048, Shaanxi, Peoples R China
[2] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
CHANNEL PARAMETERS;
D O I
10.1364/AO.465458
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Free space optical system design and performance analysis are highly related to channel statistics obtained by the channel parameter estimation. The accurate estimation of the channel parameters and scintillation index needs to consider the photoelectric detection noise at the receiving end. We propose a maximum likelihood (ML) method for estimating the parameters of a gamma-gamma fading channel affected by photoelectric detection noise. The Newton-Raphson method and expectation maximization (EM) algorithm are developed to compute the ML estimates of atmospheric turbulence fading parameters and variance of the detection noise. We also derive the Cramer-Rao bound for the unknown parameters. By way of the mean square estimation errors, our estimation technique performance is compared with existing methods of the estimation which ignore detection noise. Based on the measured channel and detection noise data under three weather conditions, it is verified that the proposed EM algorithm, considering the influence of detection noise, can significantly improve the estimation accuracy of atmospheric turbulence fading parameters. (C) 2022 Optica Publishing Group
引用
收藏
页码:7265 / 7272
页数:8
相关论文
共 50 条
  • [21] Maximum likelihood estimation of spatial covariance parameters
    Pardo-Iguzquiza, E
    MATHEMATICAL GEOLOGY, 1998, 30 (01): : 95 - 108
  • [22] Maximum Likelihood Estimation for Disk Image Parameters
    Kornilov, Matwey V.
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1480 - 1484
  • [23] MAXIMUM-LIKELIHOOD ESTIMATION OF RESTRICTED PARAMETERS
    BRUNK, HD
    ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (03): : 866 - 866
  • [24] MAXIMUM-LIKELIHOOD-ESTIMATION OF POPULATION PARAMETERS
    FU, YX
    LI, WH
    GENETICS, 1993, 134 (04) : 1261 - 1270
  • [25] Maximum Likelihood Estimation of Parameters in a Mixture Model
    Bhat, Satish
    Vidya, R.
    Parameshwar, V. Pandit
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (05) : 1776 - 1784
  • [26] Maximum likelihood estimation of link function parameters
    Dept of Statistics, Iowa State Univ, Ames IA 50011, United States
    Comput Stat Data Anal, 1 (79-87):
  • [27] Maximum Likelihood Estimation for Learning Populations of Parameters
    Vinayak, Ramya Korlakai
    Kong, Weihao
    Valiant, Gregory
    Kakade, Sham
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [28] MAXIMUM LIKELIHOOD ESTIMATION OF SURVIVAL CURVE PARAMETERS
    FROME, EL
    BEAUCHAM.JJ
    BIOMETRICS, 1968, 24 (01) : 232 - &
  • [29] Maximum likelihood estimation of asymmetric Laplace parameters
    Kotz, S
    Kozubowski, TJ
    Podgórski, K
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2002, 54 (04) : 816 - 826
  • [30] Approximate maximum likelihood estimation of circle parameters
    Chan, YGT
    Lee, BH
    Thomas, SM
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 125 (03) : 723 - 734