First-principles study of the high-pressure behavior of crystalline benzoic acid

被引:8
|
作者
Chen, Limin [1 ,2 ]
Qu, Jie [1 ]
Tao, Zhikuo [1 ]
Xie, Qiyun [1 ]
Xie, Guozhi [1 ]
Chen, Jiangwei [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Adv Electromagnet Informat Mat & Devices Res Ctr, Nanjing, Jiangsu, Peoples R China
[2] Univ Sydney, Sch Phys, Sydney, NSW, Australia
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2017年 / 28卷 / 10期
基金
中国国家自然科学基金;
关键词
DFT; high-pressure; structural transformation; electronic structure; absorption spectra; INFRARED-SPECTRA; ELECTRON-GAS; TEMPERATURE;
D O I
10.1142/S012918311750125X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, a detailed study of the structural, electronic and optical absorption properties of crystalline benzoic acid in the pressure range of 0-300 GPa is performed by density functional theory (DFT) calculations. We found that occur complex transformations in benzoic acid under compression occurs, by analyzing the variation tendencies of the lattice constants, bond lengths and bond angles under direrent pressures. In the pressure range 0-280 GPa, repeated formations and disconnections of hydrogen bonds between H1(P1) atom and O1(P1), O2(P4-x-y-z) atoms occur several times, and a new eight-atom ring (benzoic acid dimer) forms at 100 GPa and 280 GPa. Then, by analyzing the band gap and density of states (DOS) of benzoic acid, it is found that the crystal undergoes a phase transformation from insulator to semiconductor at 240 GPa and it even becomes metal phase at 280 GPa. In addition, the relatively high optical activity with the pressure increases of benzoic acid is seen from the absorption spectra, and three obvious structural transformations are also observed at 110, 240 and 290 GPa, respectively.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Diamond polytypes under high pressure: A first-principles study
    Cui, Hui-Juan
    Sheng, Xian-Lei
    Yan, Qing-Bo
    Zhu, Zhen-Gang
    Zheng, Qing-Rong
    Su, Gang
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 98 : 129 - 135
  • [42] A first-principles high-pressure study of Hf2PX (X=B, C, N)
    Li, Hui
    Luo, Zhili
    Liu, Zhe
    Sun, Guodong
    Wang, Zhenjun
    SOLID STATE COMMUNICATIONS, 2017, 259 : 45 - 49
  • [43] First-principles study on high-pressure phases and compression properties of gold-bearing intermetallic compounds
    Li, Bingtan
    Liu, Hanyu
    Liu, Guangtao
    Chen, Kaiguo
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (46)
  • [44] First-Principles Calculations of High-Pressure Physical Properties of Ti0.5Ta0.5 Alloy
    Yu, Fang
    Liu, Yu
    SYMMETRY-BASEL, 2020, 12 (05):
  • [45] First-principles based study of magnetic states and high-pressure enthalpy landscape of manganese sulfide polymorphs
    Chmeruk, Artem
    Nunez-Valdez, Maribel
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (11)
  • [46] High-Pressure Third-Order Elastic Constants of MgO Single Crystal: First-Principles Investigation
    Gu, Jianbing
    Wang, Chenju
    Sun, Bin
    Zhang, Weiwei
    Liu, Dandan
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2019, 74 (05): : 447 - 456
  • [47] First-principles simulation of high-pressure polymorphs in MgAl2O4
    Ono, Shigeaki
    Brodholt, John P.
    Price, G. David
    PHYSICS AND CHEMISTRY OF MINERALS, 2008, 35 (07) : 381 - 386
  • [48] High-Pressure Elastic Properties of Polycyclic Aromatic Hydrocarbons Obtained by First-Principles Calculations
    Litasov, K. D.
    Inerbaev, T. M.
    Abuova, F. U.
    Chanyshev, A. D.
    Dauletbekova, A. K.
    Akilbekov, A. T.
    GEOCHEMISTRY INTERNATIONAL, 2019, 57 (05) : 499 - 508
  • [49] High-Pressure Elastic Properties of Polycyclic Aromatic Hydrocarbons Obtained by First-Principles Calculations
    K. D. Litasov
    T. M. Inerbaev
    F. U. Abuova
    A. D. Chanyshev
    A. K. Dauletbekova
    A. T. Akilbekov
    Geochemistry International, 2019, 57 : 499 - 508
  • [50] Phase transition of iron doped MgO under high pressure by first-principles study
    Yang, K. S.
    Li, S. L.
    Zhang, J.
    Zeng, Z.
    Qin, X. Y.
    Zhou, X. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2015, 26 (02):