Granularity in Nonlinear Mixed-Integer Optimization

被引:6
|
作者
Neumann, Christoph [1 ]
Stein, Oliver [1 ]
Sudermann-Merx, Nathan [2 ]
机构
[1] Karlsruhe Inst Technol, Inst Operat Res, Karlsruhe, Germany
[2] BASF SE, Adv Business Analyt, Ludwigshafen, Germany
关键词
Rounding; Granularity; Pseudo-granularity; Inner parallel set; Consistency; MATHEMATICAL PROGRAMS;
D O I
10.1007/s10957-019-01591-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study a new technique to check the existence of feasible points for mixed-integer nonlinear optimization problems that satisfy a structural requirement called granularity. For granular optimization problems, we show how rounding the optimal points of certain purely continuous optimization problems can lead to feasible points of the original mixed-integer nonlinear problem. To this end, we generalize results for the mixed-integer linear case from Neumann et al. (Comput Optim Appl 72:309-337, 2019). We study some additional issues caused by nonlinearity and show how to overcome them by extending the standard granularity concept to an advanced version, which we call pseudo-granularity. In a computational study on instances from a standard test library, we demonstrate that pseudo-granularity can be expected in many nonlinear applications from practice, and that its explicit use can be beneficial.
引用
收藏
页码:433 / 465
页数:33
相关论文
共 50 条
  • [1] Granularity in Nonlinear Mixed-Integer Optimization
    Christoph Neumann
    Oliver Stein
    Nathan Sudermann-Merx
    Journal of Optimization Theory and Applications, 2020, 184 : 433 - 465
  • [2] Granularity for Mixed-Integer Polynomial Optimization Problems
    Eggen, Carl
    Stein, Oliver
    Volkwein, Stefan
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 205 (02)
  • [3] Mixed-integer nonlinear optimization
    Belotti, Pietro
    Kirches, Christian
    Leyffer, Sven
    Linderoth, Jeff
    Luedtke, James
    Mahajan, Ashutosh
    ACTA NUMERICA, 2013, 22 : 1 - 131
  • [4] Minotaur: a mixed-integer nonlinear optimization toolkit
    Ashutosh Mahajan
    Sven Leyffer
    Jeff Linderoth
    James Luedtke
    Todd Munson
    Mathematical Programming Computation, 2021, 13 : 301 - 338
  • [5] Global optimization of mixed-integer nonlinear problems
    Adjiman, CS
    Androulakis, IP
    Floudas, CA
    AICHE JOURNAL, 2000, 46 (09) : 1769 - 1797
  • [6] Minotaur: a mixed-integer nonlinear optimization toolkit
    Mahajan, Ashutosh
    Leyffer, Sven
    Linderoth, Jeff
    Luedtke, James
    Munson, Todd
    MATHEMATICAL PROGRAMMING COMPUTATION, 2021, 13 (02) : 301 - 338
  • [7] Outer Approximation for Mixed-Integer Nonlinear Robust Optimization
    Kuchlbauer, Martina
    Liers, Frauke
    Stingl, Michael
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 195 (03) : 1056 - 1086
  • [8] Outer Approximation for Mixed-Integer Nonlinear Robust Optimization
    Martina Kuchlbauer
    Frauke Liers
    Michael Stingl
    Journal of Optimization Theory and Applications, 2022, 195 : 1056 - 1086
  • [9] APPLICATION OF NONLINEAR MIXED-INTEGER PROGRAMMING AS OPTIMIZATION PROCEDURE
    MIMAKI, T
    INOWAKI, R
    YAGAWA, G
    JSME INTERNATIONAL JOURNAL SERIES A-MECHANICS AND MATERIAL ENGINEERING, 1995, 38 (04): : 465 - 472
  • [10] A mixed-integer approximation of robust optimization problems with mixed-integer adjustments
    Kronqvist, Jan
    Li, Boda
    Rolfes, Jan
    OPTIMIZATION AND ENGINEERING, 2024, 25 (03) : 1271 - 1296