Granularity in Nonlinear Mixed-Integer Optimization

被引:6
|
作者
Neumann, Christoph [1 ]
Stein, Oliver [1 ]
Sudermann-Merx, Nathan [2 ]
机构
[1] Karlsruhe Inst Technol, Inst Operat Res, Karlsruhe, Germany
[2] BASF SE, Adv Business Analyt, Ludwigshafen, Germany
关键词
Rounding; Granularity; Pseudo-granularity; Inner parallel set; Consistency; MATHEMATICAL PROGRAMS;
D O I
10.1007/s10957-019-01591-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study a new technique to check the existence of feasible points for mixed-integer nonlinear optimization problems that satisfy a structural requirement called granularity. For granular optimization problems, we show how rounding the optimal points of certain purely continuous optimization problems can lead to feasible points of the original mixed-integer nonlinear problem. To this end, we generalize results for the mixed-integer linear case from Neumann et al. (Comput Optim Appl 72:309-337, 2019). We study some additional issues caused by nonlinearity and show how to overcome them by extending the standard granularity concept to an advanced version, which we call pseudo-granularity. In a computational study on instances from a standard test library, we demonstrate that pseudo-granularity can be expected in many nonlinear applications from practice, and that its explicit use can be beneficial.
引用
收藏
页码:433 / 465
页数:33
相关论文
共 50 条
  • [1] Granularity in Nonlinear Mixed-Integer Optimization
    Christoph Neumann
    Oliver Stein
    Nathan Sudermann-Merx
    Journal of Optimization Theory and Applications, 2020, 184 : 433 - 465
  • [2] Granularity for Mixed-Integer Polynomial Optimization Problems
    Eggen, Carl
    Stein, Oliver
    Volkwein, Stefan
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 205 (02)
  • [3] A feasible rounding approach for mixed-integer optimization problems
    Neumann, Christoph
    Stein, Oliver
    Sudermann-Merx, Nathan
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 72 (02) : 309 - 337
  • [4] A feasible rounding approach for mixed-integer optimization problems
    Christoph Neumann
    Oliver Stein
    Nathan Sudermann-Merx
    Computational Optimization and Applications, 2019, 72 : 309 - 337
  • [5] Feasible rounding approaches for equality constrained mixed-integer optimization problems
    Neumann, Christoph
    Stein, Oliver
    OPTIMIZATION, 2023, 72 (02) : 581 - 606
  • [6] A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization
    Kleinert, Thomas
    Labbe, Martine
    Ljubic, Ivana
    Schmidt, Martin
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2021, 9
  • [7] Error bounds for mixed integer nonlinear optimization problems
    Oliver Stein
    Optimization Letters, 2016, 10 : 1153 - 1168
  • [8] Error bounds for mixed integer nonlinear optimization problems
    Stein, Oliver
    OPTIMIZATION LETTERS, 2016, 10 (06) : 1153 - 1168
  • [9] GENERATING FEASIBLE POINTS FOR MIXED-INTEGER CONVEX OPTIMIZATION PROBLEMS BY INNER PARALLEL CUTS
    Neumann, Christoph
    Stein, Oliver
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) : 2396 - 2428
  • [10] CONCRETE STRUCTURE DESIGN USING MIXED-INTEGER NONLINEAR PROGRAMMING WITH COMPLEMENTARITY CONSTRAINTS
    Guerra, A.
    Newman, A. M.
    Leyffer, S.
    SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (03) : 833 - 863