Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells

被引:312
|
作者
Gostick, Jeff T. [1 ]
Ioannidis, Marios A. [1 ]
Fowler, Michael W. [1 ]
Pritzker, Mark D. [1 ]
机构
[1] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
关键词
polymer electrolyte membrane; fuel cell; gas diffusion layer; pore network modeling; mass transfer; capillary pressure;
D O I
10.1016/j.jpowsour.2007.04.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A pore network model of the gas diffusion layer (GDL) in a polymer electrolyte membrane fuel cell is developed and validated. The model idealizes the GDL as a regular cubic network of pore bodies and pore throats following respective size distributions. Geometric parameters of the pore network model are calibrated with respect to porosimetry and gas permeability measurements for two common GDL materials and the model is subsequently used to compute the pore-scale distribution of water and gas under drainage conditions using an invasion percolation algorithm. From this information, the relative permeability of water and gas and the effective gas diffusivity are computed as functions of water saturation using resistor-network theory. Comparison of the model predictions with those obtained from constitutive relationships commonly used in current PEMFC models indicates that the latter may significantly overestimate the gas phase transport properties. Alternative relationships are suggested that better match the pore network model results. The pore network model is also used to calculate the limiting current in a PEMFC under operating conditions for which transport through the GDL dominates mass transfer resistance. The results suggest that a dry GDL does not limit the performance of a PEMFC, but it may become a significant source of concentration polarization as the GDL becomes increasingly saturated with water. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:277 / 290
页数:14
相关论文
共 50 条
  • [1] Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers
    Fazeli, Mohammadreza
    Hinebaugh, James
    Fishman, Zachary
    Toetzke, Christian
    Lehnert, Werner
    Manke, Ingo
    Bazylak, Aimy
    JOURNAL OF POWER SOURCES, 2016, 335 : 162 - 171
  • [2] Pore-network analysis of two-phase water transport in gas diffusion layers of polymer electrolyte membrane fuel cells
    Lee, Kyu-Jin
    Nam, Jin Hyun
    Kim, Charn-Jung
    ELECTROCHIMICA ACTA, 2009, 54 (04) : 1166 - 1176
  • [3] Steady saturation distribution in hydrophobic gas-diffusion layers of polymer electrolyte membrane fuel cells: A pore-network study
    Lee, Kyu-Jin
    Nam, Jin Hyun
    Kim, Charn-Jung
    JOURNAL OF POWER SOURCES, 2010, 195 (01) : 130 - 141
  • [4] Degradation Characteristics of Electrospun Gas Diffusion Layers with Custom Pore Structures for Polymer Electrolyte Membrane Fuel Cells
    Balakrishnan, Manojkumar
    Shrestha, Pranay
    Lee, ChungHyuk
    Ge, Nan
    Fahy, Kieran F.
    Messerschmidt, Matthias
    Scholta, Joachim
    Eifert, Laszlo
    Maibach, Julia
    Zeis, Roswitha
    Hatton, Benjamin D.
    Bazylak, Aimy
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (02) : 2414 - 2427
  • [5] Pore-network modeling of liquid water flow in gas diffusion layers of proton exchange membrane fuel cells
    Shahraeeni, Mehdi
    Hoorfar, Mina
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (20) : 10697 - 10709
  • [6] Designing Tailored Gas Diffusion Layers with Pore Size Gradients via Electrospinning for Polymer Electrolyte Membrane Fuel Cells
    Balakrishnan, Manojkumar
    Shrestha, Pranay
    Ge, Nan
    Lee, ChungHyuk
    Fahy, Kieran F.
    Zeis, Roswitha
    Schulz, Volker P.
    Hatton, Benjamin D.
    Bazylak, Aimy
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (03): : 2695 - 2707
  • [7] Incorporating Embedded Microporous Layers into Topologically Equivalent Pore Network Models for Oxygen Diffusivity Calculations in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers
    Fazeli, Mohammadreza
    Hinebaugh, James
    Bazylak, Aimy
    ELECTROCHIMICA ACTA, 2016, 216 : 364 - 375
  • [8] Pore-network modeling of liquid water transport in gas diffusion layer of a polymer electrolyte fuel cell
    Sinha, Puneet K.
    Wang, Chao-Yang
    ELECTROCHIMICA ACTA, 2007, 52 (28) : 7936 - 7945
  • [9] Modeling diffusion and convection in thin porous transport layers using a composite continuum-network model: Application to gas diffusion layers in polymer electrolyte fuel cells
    Garcia-Salaberri, P. A.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 167
  • [10] Investigation of the effect of pore diameter of gas diffusion layers on cold start behavior and cell performance of polymer electrolyte membrane fuel cells
    Hirakata, Satoki
    Mochizuki, Takashi
    Uchida, Makoto
    Uchida, Hiroyuki
    Watanabe, Masahiro
    ELECTROCHIMICA ACTA, 2013, 108 : 304 - 312