A Cramer type moderate deviation theorem for the critical Curie-Weiss model

被引:2
|
作者
Van Hao Can [1 ]
Viet-Hung Pham [1 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet St, Hanoi 10307, Vietnam
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2017年 / 22卷
关键词
Cramer type moderate deviation; Curie-Weiss model; RANDOM-VARIABLES; STEINS METHOD; TESTS;
D O I
10.1214/17-ECP96
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Limit theorems for the magnetization of Curie-Weiss model have been studied extensively by Ellis and Newman. To refine these results, Chen, Fang and Shao prove Cramer type moderate deviation theorems for non-critical cases by using Stein method. In this paper, we consider the same question for the remaining case-the critical Curie-Weiss model. By direct and simple arguments based on Laplace method, we provide an explicit formula of the error and deduce a Cramer type result.
引用
收藏
页数:12
相关论文
共 30 条
  • [21] Berry-Esseen bounds in the inhomogeneous Curie-Weiss model with external field
    Dommers, Sander
    Eichelsbacher, Peter
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (02) : 605 - 629
  • [22] Curie-Weiss Type Models for General Spin Spaces and Quadratic Pressure in Ergodic Theory
    Leplaideur, Renaud
    Watbled, Frederique
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (01) : 263 - 292
  • [23] Strict deformation quantization of the state space of Mk(C) with applications to the Curie-Weiss model
    Landsman, Klaas
    Moretti, Valter
    van de Ven, Christiaan J. F.
    REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (10)
  • [24] A Conditional Curie-Weiss Model for Stylized Multi-group Binary Choice with Social Interaction
    Opoku, Alex Akwasi
    Edusei, Kwame Owusu
    Ansah, Richard Kwame
    JOURNAL OF STATISTICAL PHYSICS, 2018, 171 (01) : 106 - 126
  • [25] Cramer type moderate deviation theorems for self-normalized processes
    Shao, Qi-Man
    Zhou, Wen-Xin
    BERNOULLI, 2016, 22 (04) : 2029 - 2079
  • [26] Central limit theorem and self-normalized Cramer-type moderate deviation for Euler-Maruyama scheme
    Lu, Jianya
    Tan, Yuzhen
    Xu, Lihu
    BERNOULLI, 2022, 28 (02) : 937 - 964
  • [27] Dynamical Gibbs-non-Gibbs Transitions in the Curie-Weiss Potts Model in the Regime β < 3
    Kulske, Christof
    Meissner, Daniel
    JOURNAL OF STATISTICAL PHYSICS, 2021, 184 (02)
  • [28] Cramer-type moderate deviation of normal approximation for unbounded exchangeable pairs
    Zhang, Zhuo-Song
    BERNOULLI, 2023, 29 (01) : 274 - 299
  • [29] Self-Normalized Cramer-Type Moderate Deviations for Explosive Vasicek Model
    Jiang, Hui
    Pan, Yajuan
    Wei, Xiao
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (01) : 228 - 250
  • [30] REFINED CRAMER-TYPE MODERATE DEVIATION THEOREMS FOR GENERAL SELF-NORMALIZED SUMS WITH APPLICATIONS TO DEPENDENT RANDOM VARIABLES AND WINSORIZED MEAN
    Gao, Lan
    Shao, Qi-Man
    Shi, Jiasheng
    ANNALS OF STATISTICS, 2022, 50 (02) : 673 - 697