Scatter search techniques applied to electromagnetic problems

被引:10
作者
Vasconcelos, JA [1 ]
Maciel, JHRD [1 ]
Parreiras, RO [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Elect Engn, BR-31270010 Belo Horizonte, MG, Brazil
关键词
evolutionary algorithms; multiobjective optimization; scatter search;
D O I
10.1109/TMAG.2005.846474
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new multiobjective scatter search algorithm. First, one demonstrates the standard scatter search performance by applying it to solve a single-objective inverse electromagnetic scattering problem. Then, the changes necessary to solve multiobjective optimization problems that should be implemented in a single-objective algorithm are discussed. As a result of this discussion, one proposes the use of a nondominated sorting technique and a niched-type penalty method in order to extend the scatter search technique to multiobjective problems. The results obtained by the new algorithm show its performance and helpfulness in solving multiobjective electromagnetic problems.
引用
收藏
页码:1804 / 1807
页数:4
相关论文
共 7 条
[1]  
AFONSO MM, 2000, P IEEE C CBMAG2000, V1, P353
[2]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[3]   Multiobjective genetic algorithms applied to solve optimization problems [J].
Dias, AHF ;
de Vasconcelos, JA .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) :1133-1136
[4]  
Laguna M., 2002, EXPT TESTING ADV SCA
[5]  
QUINN A, 2001, IEEE T GEOSCI REMOTE, V39, P665
[6]   Niching genetic algorithms for optimization in electromagnetics - I. Fundamentals [J].
Sareni, B ;
Krahenbuhl, L ;
Nicolas, A .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) :2984-2987
[7]   Treating constraints as objectives in multiobjective optimization problems using niched pareto genetic algorithm [J].
Vieira, DAG ;
Adriano, RLS ;
Vasconcelos, JA ;
Krähenbühl, L .
IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) :1188-1191